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Abstract - As IoT devices continue to proliferate and integrate with cloud computing platforms, the attack surface for 
cyber threats has expanded significantly. The paper is a review of EdgeSecFL framework, which is a light federated 
learning (FL) model introduced to deal with prevention of intrusion in the IoT-cloud ecosystem. EdgeSecFL uses 
decentralized training, secure aggregation and blockchain-based logging to achieve greater privacy, cut down on 
communication overhead, and establish tamper-evident auditability. The model supports adaptive edge coordination 
and cost-efficient cloud deployment, making it suitable for resource-constrained environments. Comparative analysis 
proves that EdgeSecFL is superior to previous FL-based IDS systems in the following parameters: latency, scalability 
and data protection. Other ethical and governance considerations such as explainability, fairness, alignment with 

emergent regulatory frameworks are addressed in the review as well. Lastly, the article presents future areas of 
research such as quantum-resistant cryptographic integration and self-orchestrated FL. EdgeSecFL stands as a robust 
foundation for developing secure, policy-aware, and scalable intrusion detection systems across modern distributed 
infrastructures.  

Keywords - Federated Learning, Intrusion Detection Systems, IoT-Cloud Security, Blockchain, Secure Aggregation, 
Privacy-Preserving Machine Learning.  

I. INTRODUCTION 
The fusion of the Internet of Things (IoT) and cloud computing has catalyzed a new era of hyper-connected 

infrastructure [1], where data is generated, processed, and analyzed across a vast network of distributed endpoints. Such 
convergence enables organizations to utilize scalable computation and storage and concurrently to assemble real-time data 
in smart homes, cities, industrial control systems, and healthcare situations using edge devices. Yet, with more 

connectedness and the use of cloud backbones, the threat surface has also vastly grown, making such environments more 
appealing to the ground of a cyberattack. IoT devices are typically constrained in terms of computational power, memory, 
and security controls [2]. When integrated with powerful but centralized cloud services, they can unintentionally serve as 
entry points for malicious actors. Vulnerabilities in device firmware, insecure APIs, misconfigured cloud permissions, and a 
lack of real-time security monitoring lead to a high-risk environment [3]. Traditional intrusion detection systems (IDS), 
often designed for centralized data centers, struggle to cope with the distributed, dynamic, and heterogeneous nature of IoT-
cloud systems. 

One possible option to this difficulty is the solution concept of Federated Learning (FL) which is a decentralized 
machine learning model that allows training a model on numerous devices without transmitting raw data to the central 
server [4]. In such a way, FL takes care of the data privacy and latency issues. but mainstream FL frameworks tend to be 
resource-hungry and not to be tailored towards low-power edge devices. To address this limitation, EdgeSecFL has been 

proposed as a lightweight FL-based intrusion detection framework designed specifically for IoT-cloud ecosystems. It 
emphasizes computational efficiency, secure communication, and adaptability to resource-constrained environments. 

As shown in Figure 1, the number of documented IoT-cloud security incidents has risen. The given trend is not only 
about the increased use of IoT in mission-critical sectors but also about the increasing complexity of the security of such 
ecosystems. In concurrence with these technical innovations, security policies regarding the cloud have gone through 
important advancements as well that have helped to contain the threats of dynamically evolving environments [5]. Cloud 
Security Posture Management (CSPM) is one of them and provides automation of cloud services configuration errors 
identification and correction. CSPM enables continuous compliance monitoring, vulnerability detection, and policy 
enforcement capabilities that are essential in environments where IoT and cloud systems operate in tandem [6]. He claims 
that "CSPM tools are becoming a critical component of any cloud, especially the ones incorporating resource-constrained 
edge gadgets into centralized services". 
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Figure 1: Growth of IoT-Cloud Attacks 

The integration of models like EdgeSecFL with CSPM frameworks presents a multi-layered approach to securing IoT-
cloud infrastructures. Although EdgeSecFL provides visibility at the local level and data privacy, CSPM supports visibility into 
cloud-level and compliance, which can be especially effective against the threat of advanced persistent threats (APT) and 
misconfiguration-based attacks. This article provides a comprehensive review of EdgeSecFL, evaluating its architecture, 
performance, cryptographic foundations, and deployment feasibility. It also aligns the security innovations and policy 
frameworks, especially those that prioritize privacy preservation, quantum-resilient encryption, and autonomous policy 
enforcement to demonstrate its relevance in contemporary cybersecurity landscapes. 

II. BACKGROUND AND MOTIVATION 
The integration of IoT and cloud computing has undoubtedly revolutionized how data-driven services are built and 

consumed [7]. However, this convergence also brings high levels of cybersecurity risks that should be met using technical 

and decidedly policy-based solutions [8]. This section identifies the major threats of the Internet of Things-cloud 
convergence and assesses the relationship of the Federated Learning (FL) as a new decentralized intrusion-detection defense 
mechanism. 

A. Security Challenges in IoT-Cloud Convergence 
As IoT devices proliferate across sectors ranging from smart homes and healthcare to industrial automation and 

smart cities the pairing of IoT devices with cloud infrastructures gives rise to a tiled ecosystem through which heterogeneous 
attack surfaces have to be addressed [9]. IoT devices are typically deployed in uncontrolled environments and are designed 
with low computational overhead, often lacking even basic security hardening features such as firmware validation, 
authentication enforcement, and real-time monitoring. In contrast, superiorly equipped in security tools, the cloud 
environments are marred by complex configurations, multi-tenant exposures, and vulnerability of the API, further 
propagating the security problems in the combination with IoT nodes that are not well secured [10]. 

A major vulnerability lies in the communication linkages between IoT devices and cloud services, typically over 
insecure wireless networks [11]. Man-in-the-middle attacks, DNS spoofing, and packet sniffing are common exploits here. 
When compromised, these gadgets can be used as entry points in lateral movement to cloud settings resulting in mass 
compromises. 

Table 1: Common Security Vulnerabilities in IoT vs. Cloud Ecosystems 

Category IoT Devices Cloud Infrastructure 

Attack Vector Weak authentication, open ports Misconfigured S3 buckets, insecure APIs 

Exploitation Frequency Very high Medium to high 

Typical Impact Botnets, DDoS, lateral movement Data leaks, privilege escalation 

Policy Enforcement Limited or nonexistent Manual and error-prone 

Security Updates Infrequent or absent Centralized but requires policy compliance 

It is a very significant policy enforcement gap between the edge devices and the cloud components. While cloud 
providers offer tools for managing access control and monitoring usage, there is limited enforcement at the edge. Researcher 
highlight the inadequacy of traditional perimeter defense models in securing decentralized mobile networks and advocate for 
blockchain-based verification and multi-layered policy control as a response to the growing threat landscape [12]. Their 

results also highlight how security systems that combine edge and clouds infrastructures are required. Moreover, emerging 
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threats like AI-powered attacks, supply chain manipulation, and zero-click exploits require real-time detection, which is not 
easy to achieve using older IDS solutions that run on centralized or cloud-based datasets. 

B. Role of Federated Learning in Intrusion Detection 
Intrusion Detection Systems (IDS) play a pivotal role in identifying anomalies and attacks within digital environments 

[13]. Traditional IDS models rely significantly on centralized aggregation of data and this has led to considerable privacy 
risks and also presented a challenge of latency in high-velocity edge data. This is where Federated Learning (FL) provides a 

very interesting option. FL is a privacy-preserving, decentralized approach to machine learning, where model training occurs 
locally on distributed devices, and only the model updates, not raw data are shared with a central aggregator [14]. This 
architecture specially can help in intrusion detection in the IoT-cloud systems, which are characterised by data sensitivity, 
heterogeneity of devices and limited bandwidth as the significant limitations. 

 
Figure 2: Centralized vs. Federated Learning for IDS 

In the centralized model, raw traffic data from IoT sensors are forwarded to a cloud-based IDS engine for analysis. 

This configuration is quite bandwidth intensive besides going contrary to data minimisation. Conversely, FL disperses the 
detection logic and enables local models to adapt to attack patterns depending on contexts in the used devices. Such models 
are also matched with an international model that will grow in precision without indulging in any privacy violation. 

The benefits of FL for intrusion detection are multi-fold: 
 Data Sovereignty: Sensitive data never leaves the device. 
 Bandwidth Efficiency: Only updates are transmitted, not entire datasets. 
 Personalized Security: Every device has the capability of molding the global pattern to its behavior. 
 Scalability: New devices can join the learning process with minimal disruption. 

These advantages go well with the ambitions of privacy-first computing, which finds acceptance in regulated markets, 
including healthcare, finance and critical infrastructure. As the IoT-cloud ecosystem continues to expand, intrusion detection 
systems must evolve to meet the demands of distributed intelligence, minimal data exposure, and low-latency response 

[15].Furthermore, FL supports adaptive learning, where models can evolve dynamically with the arrival of new attack 
vectors without having to be retrained. This agility is especially valuable in environments where zero-day vulnerabilities and 
novel attack variants are increasingly common. 

The IoT-cloud coalescence has also provided a wide array of security threats, which cannot be managed using 
monolithic and centralized solutions only. Federated Learning, particularly lightweight implementations such as EdgeSecFL, 
presents a scalable and privacy-compliant framework for deploying IDS in such dynamic ecosystems. Combining FL-based 
IDS with policy-conscious structures such as CSPM and blockchain-based governance frameworks will allow minimizing 
exposure as well as the length of the time between the attack notification and the corresponding detection, which can keep 
organizations on pace with the ever-changing cyber threats. 

III. ARCHITECTURE OF EDGESECFL 
EdgeSecFL architecture is modeled with the main goal of providing federated intrusion detection across resource-

limited IoT devices. In contrast to the existing federated learning versions where a substantial amount of computational and 
communication resources are assumed, EdgeSecFL adapts to the functional constraints of heterogeneous edge devices in the 
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setting where real-time IoT-cloud systems are involved. In this section, the main architectural elements of EdgeSecFL are 
described, namely the lightweight model approach, its secure and synchronised protocol communication, etc. 

A. Overview of Lightweight FL Models 
When it comes to implementing federated learning (FL) in an IoT environment, there is a need to redefine the process 

of training machine learning models and updating them. IoT devices, ranging from microcontrollers to embedded 
processors, typically lack sufficient RAM, processor throughput, or battery capacity to handle full-scale deep learning tasks. 

Therefore, lightweight models must be adopted to ensure practical implementation and sustainability over prolonged 
operation [16]. Model training in EdgeSecFL is conducted locally, at IoT node level, based on compact, conventionally 
structured sets of features, extracted in intrusion detection local logs. To conserve device resources, the model utilizes 
compression techniques such as quantization and weight sharing, reducing its memory footprint. Furthermore,  frequency of 
update is conditionally regulated, based on the number of the device in use and the availability of the network, so that the 
asynchronous presence will be permissible in any cases, and the slower devices will not receive any penalization. 

Another feature that EdgeSecFL has in common with local caching and incremental learning approaches is the ability 
of devices to train as they go through a sequence of cached events, with no expensive retraining done on the fly. This 
architectural design reflects key principles from [17], which emphasizes the importance of efficient training data caching and 
workload scheduling for deep learning in edge computing networks. He concluded that the model stability and energy usage 
of performing in distributed networks would be more stable when there was a balance between memory usage and the 

frequency of updates. 

B. Communication & Synchronization Protocols 
The efficiency and trustworthiness of FL systems are heavily influenced by their communication protocols, 

specifically, how client updates are transmitted, aggregated, and validated [18]. In EdgeSecFL, much focus is given to reduce 
the communication overhead and maintain the security of the update process to avoid data leakage and manipulating the 
model. One of the standout features is differential model sharing, a technique where each participating IoT device sends only 
the differences (deltas) between its current local model and the last received global model. This significantly decreases the 
volume of information sent per round of training, and it is highly useful to network with bandwidth limitations or known 
interconnectivity. 

To maintain the integrity and privacy of updates, EdgeSecFL supports secure aggregation protocols, which allow the 
central server (aggregator) to compute a global model from encrypted individual contributions without exposing their 

contents. Further, an update authentication based on lightweight digital signatures is useful to protect the poisoning and 
replay attacks of compromised devices. 

 
Figure 3: EdgeSecFL System Architecture 

Figure 3 captures the complete FL lifecycle in EdgeSecFL from the collection of local intrusion data, through model 
training and update submission, to global model aggregation and redistribution. The architecture incorporates a feedback 
loop where it continues to integrate the results of detecting (e.g. false positives in an anomaly detection algorithm or missed 
anomalies in a host-level intrusion detection system) into further training steps so the system learns dynamically as new 
threats are introduced in real-time. While [19] focuses on secure microservice communication in optical networks, his 
architectural insights on encrypted control paths, synchronized service coordination, and multi-tenant access control are 
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highly relevant in federated environments like EdgeSecFL. These ideals can be seen reflected in the methods of secure 
synchronization that are employed in EdgeSecFL, allowing the model to remain functional in the presence of various, 
business-like, fragmented networks. 

The efficient and secure implementation forms the building blocks of the architecture of EdgeSecFL, which are two of 
the most significant needs to implement federated intrusion detection in the IoT-cloud environments. It circumvents the 
drawbacks of traditional FL frameworks through its use of lightweight models, delta-based update sharing and safe 

synchronization protocols to open new possibilities of building scalable and privacy-respecting IDS systems. Its architectural 
design reflects well-established strategies, particularly those by Jangid, on optimizing distributed learning for real-world, 
constrained environments. 

IV. SECURITY ENHANCEMENTS IN EDGESECFL 
Security is not merely a functional add-on in the EdgeSecFL model, it is a foundational requirement. Since the nature 

of threats to Internet of Things-cloud ecosystems is becoming more advanced, EdgeSecFL will introduce many security layers 
so as to guarantee data integrity, security against adversaries manipulation and policy-compliant governance. This section 
explores the system’s adversarial robustness strategies and its alignment with policy enforcement frameworks such as Cloud 
Security Posture Management (CSPM). 

A. Adversarial Robustness in FL Models 
Federated learning systems, while decentralized and privacy-preserving, are not immune to attacks. Malicious parties 

or participants or malicious devices or malicious parties or participants can manipulate the model update or attacks on 
model state during synchronization. EdgeSecFL proactively addresses these challenges through multiple robustness 
mechanisms designed to protect the learning process. 

Some common adversarial threats in FL settings include: 
 Model Poisoning: Where clients intentionally manipulate training data or updates to degrade the global model’s 

performance. 
 Backdoor Attacks: In the malicious attitude where the updated model installs concealed triggers to wrongly 

recognize certain inputs. 
 Inference Attacks: Where adversaries attempt to reconstruct training data from shared updates. 
 Free-rider Attacks: Where clients avoid training but still benefit from the global model. 

With the aim of mitigating such threats, EdgeSecFL will incorporate numerous defense methods: 

 Noise Injection at the local training stage introduces controlled randomness to gradients, reducing the success of 
inference attacks. 

 Adversarial Client Detection Adversarial Client Detection detects deviating updates based on statistical residual or 
the filtering technique clustering before aggregation. 

 Audit Trails maintain immutable logs of client activity and update patterns, aiding in anomaly detection and 
accountability. 

Table 2: Adversarial Threats vs. EdgeSecFL Countermeasures 

Threat Type Example Attack EdgeSecFL Defense Mechanism 

Model Poisoning Label flipping, gradient bias Statistical filtering, audit trail logs 

Backdoor Insertion Trigger injection Update anomaly detection 

Inference Attack Gradient leakage Noise injection, secure aggregation 

Free-rider Behavior No local training Contribution-weighted aggregation 

Sybil Attack Multiple fake clients Signature validation, reputation scoring 

As shown in Table 2, each threat is mapped to specific defenses within the EdgeSecFL architecture. The measures are 
defined by practical attack models that have been studied throughout federated learning literature and augmented by 

features of decentralized accountability. It highlighted similar attack vectors in blockchain-enabled mobile networks, 
advocating for decentralized identity validation and tamper-evident logs as key elements for resilient systems concepts which 
EdgeSecFL builds upon within the FL domain [12]. 

Moreover, EdgeSecFL uses dynamic feedback to strengthen its robustness in being able to repair itself through 
retraining. Detection failures or false positives are flagged and fed back into the learning cycle, allowing local models to re-
adapt using updated datasets, thereby closing the loop between detection and resilience. 
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B. Policy Enforcement and Governance 
Although technical robustness is paramount, the security governance and adherence to the policies are fundamentally 

important in the deployment in the real world.  EdgeSecFL distinguishes itself by incorporating policy-aware control through 
integration with Cloud Security Posture Management (CSPM) systems, enabling security teams to define, monitor, and 
enforce compliance policies across the federated ecosystem. 

Researchers [20] emphasizes the importance of automated security policy enforcement in dynamic cloud 

environments, particularly where device configurations and user access frequently change. CSPM acts as a control tower of 
cloud-native environments and automates the process of policy violations, misconfigurations, and insecure access rules 
identification in a nearly real time. 

EdgeSecFL leverages this by embedding policy compliance hooks within its federated training cycles. For example, device 
eligibility for participation in FL training can be linked to: 

 Real-time CSPM posture scores, 
 Identity verification tokens, 
 Encryption compliance checks, and 
 Device access logs reviewed against defined governance baselines. 

 
Figure 4: CSPM-Integrated EdgeSecFL Policy Framework 

As shown in Figure 4, the CSPM layer acts as an overwatch system, enforcing rules that dictate how, when, and if a 
device can join the training cycle. This includes dynamic revocation of compromised clients, automatic rollbacks upon policy 

violations, and dashboard-level visibility into training metrics and security indicators. 

Furthermore, CSPM integration supports regulatory mandates such as [21]: 
 HIPAA compliance in healthcare IoT systems, 
 GDPR controls over personal data exposure, and 
 Zero Trust access frameworks for cloud APIs and device identities. 

This policy enforcement level is to make sure that EdgeSecFL does not only perform with security but the security is 
based on the constraints of legal, ethical, and organization regulations, where the boundaries between technical operations 
and organization responsibility converge. EdgeSecFL has two aspects of security improvements, namely, technical resilience 
and alignment of governance. Technically, adversarial attack defense is put directly into the training and update protocols, 
making the training and subsequent update processes smaller [22]. When it comes to governance, seamless interconnectivity 

with CSPM frameworks allows the system to establish automated compliance and policy-based functionality, so that it can 
live up to the contemporary needs of cloud security and IoT-based experimentation. Together, these mechanisms establish 
EdgeSecFL as a secure-by-design federated learning model, prepared for real-world deployment in sensitive and regulated 
environments. 

V. CRYPTOGRAPHIC AND PRIVACY CONSIDERATIONS 
The challenge of achieving security in federated learning (FL) is not related only to the architecture of the model and 

the issues of detecting attacks: the capability of federated learning to preserve the privacy and integrity of datasets during 
model aggregation and communication is a central concern. Cryptographic protections are imperative in the situation of 
EdgeSecFL, which runs across different and possibly insecure networks. There are two important features traced in this 
section: secure aggregation techniques used in FL, and the readiness of these techniques against quantum-enabled threats. 
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A. Secure Aggregation and Encryption Methods 
In order to achieve the privacy and integrity of model updates in federated learning, EdgeSecFL will adapt and 

incorporate the state-of-the-art cryptography methods to achieve efficient and secure aggregation.  The following 
subcomponents describe how these methods are applied. 

a) Federated Averaging and Privacy Concerns 
The fundamental process in FL is federated averaging the updates calculated by separated client devices are collected 

to create a brand-new global design. While this process eliminates the need to transmit raw data, model updates themselves 
can leak sensitive information if intercepted or reverse-engineered. 

b) Homomorphic Encryption (HE) 
In response to that, EdgeSecFL is a combination of homomorphic cryptography (HE) [23] and multiparty 

computation (SMPC) in securing the aggregation procedure.   Homomorphic Encryption allows mathematical operations 
(such as averaging) to be performed directly on encrypted data without decryption. This ensures that the aggregator can 
compute the global model without ever seeing the individual updates in plaintext. 

c) Secure Multiparty Computation (SMPC) 
Secure Multiparty Computation enables clients to collaboratively compute an aggregate without disclosing their 

inputs to one another or to the aggregator [24]. It assumes a partial trust scheme and is maintained against collusion with a 
group of players. 

d) Trade-offs in Cryptographic Techniques 
SMPC reduces the privacy risks inherent in FL but comes with trade-offs in terms of computational overhead and 

communication latency. In the EdgeSecFL, the lightweight versions of these protocols are used so that its versions can be 
compatible with resource-constrained IoT devices. 

e) Applicability in Sensitive Domains 
These cryptographic techniques are vital for ensuring confidentiality, integrity, and non-repudiation in federated 

learning settings [29], particularly when models are used in sensitive environments like healthcare, finance, or critical 
infrastructure. Together, these methods enable EdgeSecFL to deliver privacy-preserving model training while remaining 
feasible for deployment in real-world IoT-cloud ecosystems. 

B. Post-Quantum Readiness 
As quantum computing continues to progress, existing public-key cryptographic schemes including those used in 

federated learning protocols may become obsolete. Quantum algorithms such as Shor’s and Grover’s pose serious threats to 
encryption standards like RSA, ECC, and even symmetric key protocols with insufficient key lengths. The urgency of 
transitioning to quantum-resistant cryptographic frameworks, especially in national security and critical infrastructure 
applications [25]. In his roadmap for quantum-resistant cybersecurity, he noted that The long-term viability of cloud and 
edge security depends on early adoption of post-quantum algorithms and retrofitting current architectures for quantum 
resilience. 

In the FL context, this means integrating lattice-based, hash-based, or code-based encryption techniques that are 
resistant to known quantum attacks. EdgeSecFL, while currently reliant on classical HE and SMPC protocols, is architected to 
support pluggable cryptographic backends, allowing migration to post-quantum cryptographic libraries as they become 
standardized. 

Table 3: Cryptographic Techniques in FL vs. Quantum Resistance 

Technique Current Use in 
FL 

Quantum Resistance Notes 

Homomorphic Encryption Yes Vulnerable (RSA-
based) 

Needs replacement with lattice-based 
HE 

Secure Multiparty Computation 
(SMPC) 

Yes Partially resistant Depends on underlying primitives 

Lattice-Based Encryption No 

(Experimental) 

Strong Suitable for future FL deployments 

Hash-Based Signatures Limited Use Strong Good for update verification 

Code-Based Cryptography No Strong Requires efficient implementation 

As shown in Table 3, many current cryptographic approaches used in FL are not inherently resistant to quantum 
threats. EdgeSecFL anticipates this by remaining modular, enabling a phased transition to post-quantum cryptographic 
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standards once they are finalized and adopted by global cybersecurity authorities. EdgeSecFL prioritizes cryptographic 
privacy through secure aggregation protocols while acknowledging the imperative for post-quantum transition planning. Its 
flexible architecture ensures that future deployments can evolve alongside emerging threats both classical and quantum. 

VI. DEPLOYMENT MODELS AND SYSTEM OPTIMIZATION 
While security and privacy are critical to any federated learning (FL) system, practical deployment and optimization 

strategies are equally important for real-world adoption. EdgeSecFL is developed towards practical (as in private and secure) 

scalable/cost effective intrusion detection systems in IoT-cloud environments. This section examines two key operational 
dimensions: coordinated training across diverse edge devices and economical use of cloud resources for orchestration and 
model aggregation. 

A. Efficient Edge Device Coordination 
In federated learning, one of the most persistent challenges is the asynchronous and unreliable participation of edge 

devices. Unlike centralized servers or enterprise clients, the IoT nodes can have unpredictable connectivity, inconsistent 
power state or even become unavailable temporarily. This is tackled by drop out resistant synchronization of models and 
dynamic client selection as done by EdgeSecFL 

Dropout tolerance ensures that the absence of certain client updates in a training round does not disrupt the global 
aggregation process. Instead of waiting for all participants to submit updates (synchronous FL), EdgeSecFL incorporates an 
asynchronous learning framework, waiting until updates can be received, and down-weighting updates that are unreliable 

historically and irrelevant to the data holding historical weight. 

To further optimize training efficiency, the system implements adaptive client selection algorithms that prioritize devices 
based on: 

 Network bandwidth, 
 Recent participation frequency, 
 Local data freshness, and 
 Energy availability. 

Such an approach saves time needed to train the model but does not overload low-resource clients and hence offers 
maximum utility of the model. Jangid & Malhotra (2022) [26] highlight similar principles in their work on optimizing 
software operations across optical transport networks. They emphasize the value of asynchronous task scheduling, adaptive 
load balancing and event-driven computation all of which are relevant to EdgeSecFL when and where coordination of the 

devices and collection of the updates is necessary. 

B. Cost-Efficient Cloud Usage and Instance Reliability 
While federated learning shifts computation to edge devices, cloud infrastructure remains essential for tasks such as 

global model aggregation, update validation, secure storage, and orchestration. That is why reducing the complexity and cost 
of the cloud consumption are important primarily in large-scale deployments in distributed IoT fleets. EdgeSecFL supports 
containerized deployments using Docker or Kubernetes, allowing each component (e.g., aggregator, policy engine, secure 
aggregation service) to scale independently based on workload. The system also leverages cloud-native autoscaling, where 
instances are spun up dynamically based on the number of participating clients or the volume of incoming model updates.  

A notable cost optimization strategy involves the use of spot instances cloud resources offered at reduced rates due to excess 
capacity. While spot instances can be revoked at any time, EdgeSecFL mitigates this risk through: 

 Redundant aggregators operating in active-passive mode, 
 Checkpointing global models after each update round, and 
 Fallback to on-demand instances during revocation events. 

The techniques allow high availability without having to invest in costly long instances. In case of aggregator failure, 
other standby containers can resume operations using the most recent model snapshot, ensuring continuity with minimal 
downtime. 

Table 4: Cloud Deployment Strategies for FL in IoT Environments 

Deployment Strategy Reliability Cost-Efficiency Resource Utilization 

Static VMs (On-Demand) High Low Moderate 

Autoscaled Containers Moderate to High Moderate to High Efficient 

Spot Instance Scheduling Moderate (with fallback) Very High Very Efficient 

Hybrid Aggregation Nodes High Moderate High 
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As shown in Table 4, container-based orchestration and spot instance scheduling provide the best combination of cost 
savings and scalability, particularly when paired with EdgeSecFL’s fault-tolerant design. Organizations which use federated 
IDS at scale e.g. smart cities or industrial control systems are able to reduce operational overhead whilst ensuring consistent 
training and inference models run in a cycle. 

VIII. INTEGRATION WITH EMERGING TECHNOLOGIES 
To enhance the security, trustworthiness, and automation of federated learning environments, EdgeSecFL embraces 

emerging technologies such as blockchain and smart contracts. The technologies provide new systems of tamper evident 
logging, automatization of trust enforcement, and autonomous orchestration which are essential to decentralized intrusion 
detection implementation on heterogeneous IoT-cloud infrastructures.This section explores two key directions: blockchain-
backed secure logging and the use of AI and smart contracts for autonomous model coordination. 

A. Blockchain for Secure Logging and Authentication 
Federated learning, while decentralized in computation, still depends on centralized aggregators for coordination. 

This develops a single point of trust and exposes the system to problems such as model tamper, update repudiation, 
malicious roll back [27]. To mitigate these risks, EdgeSecFL integrates a blockchain-based logging mechanism that records 
each client update, model version, and system decision in an immutable ledger. 

The blockchain is like public accountability. Every transaction is a signed model change, or system event, such as: 
 Timestamped client model contributions, 

 Update integrity checksums, 
 Aggregator signatures confirming participation, and 
 Policy compliance metadata (e.g., CSPM scores, update eligibility). 

With this log, a model, an auditor, or an administrator can be able to track the origin of each of the updates, identify 
the outlier behavior and confirm the actuality of models employed in the detection. By anchoring these events to a 
blockchain, EdgeSecFL ensures non-repudiation, meaning clients cannot deny their participation or falsify their 
contributions. 

Study [12] discusses blockchain’s application for securing mobile wireless networks and multi-party interactions, 
highlighting its utility in creating verifiable and decentralized trust in environments where central control is infeasible. 
EdgeSecFL extends this intuition by carrying out these concepts to a federated learning setting, where trust of devices cannot 
be assumed and the history of updates is expected to be as uncontaminated as possible. 

B. AI, Smart Contracts, and Autonomy in FL Systems 
Although blockchain enables integrity and transparency, smart contracts based on a blockchain infrastructure enables 

a new horizon of automation and policy enforcement in federated learning. Smart contracts in EdgeSecFL function as 
programmable agents that enforce: 

 Eligibility checks (e.g., clients must meet cryptographic compliance or CSPM thresholds), 
 Contribution thresholds (e.g., minimum updates before inclusion in aggregation), 
 Reputation-based trust scores (e.g., declining influence from historically unreliable clients). 

For instance, a smart contract could automatically reject updates from a client whose previous contributions were 
statistically anomalous, or dynamically adjust aggregation weights based on real-time IDS feedback scores [28]. In more 
sophisticated constructions, such smart contracts communicate with intelligent policy engines, powered by AI, which 

considers device behavior, the threat context, and modification-prediction task performance based on historical telemetry 
and threat intelligence streams. The result is a self-regulating federated ecosystem where devices are automatically 
rewarded, penalized, or excluded based on behavior without manual oversight. 

Figure 5 visually captures this integration, showing how EdgeSecFL blends federated learning with blockchain 
infrastructure and smart contract logic to form a secure, trustless orchestration layer. The diagram also illustrates 
checkpoints where models are hashed, logged, and compared on integrity assurance prior to deployment. 

This architecture is particularly suitable for: 
 Multi-tenant smart city deployments, 
 Cross-border industrial collaboration, and 
 Healthcare FL networks, where device trust and policy compliance must be enforced across jurisdictions and 

systems. 
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Moreover, the native features of blockchain, as the blockchain platforms develop to accommodate lightweight star 
consensus and energy-efficient computing environments, their usage starts to be feasible with edge-centered federated 
systems, such as the EdgeSecFL. 

 
Figure 5: Blockchain-Enhanced Federated Learning Workflow 

By integrating blockchain, smart contracts, and AI-based orchestration, EdgeSecFL transforms traditional federated 
learning into a trustless, self-governing system. Blockchain ensures non-repudiation and tamper-evidence, while smart 
contracts introduce programmable trust enforcement without human intervention. These emerging technologies enhance 
the scalability and resilience of intrusion detection in distributed IoT-cloud infrastructures and represent a forward-
compatible path toward autonomous, policy-aware security systems. 

VII. COMPARATIVE ANALYSIS 
To evaluate the practical utility and performance of EdgeSecFL, it is essential to benchmark it against other notable 

federated learning-based intrusion detection systems (FL-IDS). The following comparative analysis examines five models 
across key dimensions latency, privacy, scalability, and model performance to highlight EdgeSecFL’s strengths and trade-
offs. 

A. Evaluation Criteria 
The comparison uses the following standardized evaluation metrics: 

 Latency (ms): Time taken to complete one full model synchronization cycle (i.e., local training + communication + 
aggregation). 

 Model Accuracy: Effectiveness of the trained model in correctly identifying normal vs. malicious activity. 
 Privacy Score (qualitative): Degree of privacy preservation based on encryption, data exposure, and vulnerability to 

inference attacks (scored as High, Medium, or Low). 
 Scalability (qualitative): System’s ability to perform effectively as the number of participating edge devices increases 

(rated as Excellent, Good, or Limited). 

B. Models Compared: The five selected FL-IDS models are: 
 EdgeSecFL: A lightweight, asynchronous, policy-aware FL system with blockchain logging and secure aggregation. 
 FedAvg-ID: A basic federated IDS applying standard FedAvg without compression or secure aggregation. 
 FedHomeSec: A home IoT-focused model with differential privacy but limited in scalability. 
 IoTFLGuard: A bandwidth-optimized FL model with sparse update transmission and edge caching. 
 TinyFedDetect: An ultra-light FL framework for microcontrollers using binary classifiers and static model 

compression. 

Table 5: Comparative Performance Analysis of FL-based IDS Models 

Model Latency (ms) Accuracy Privacy Score Scalability 

EdgeSecFL Low High High Excellent 

FedAvg-ID High Moderate Low Limited 

FedHomeSec Moderate High High Limited 

IoTFLGuard Low Moderate Medium Good 

TinyFedDetect Very Low Low Medium Good 
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C. Interpretation of Results 
 Latency: EdgeSecFL demonstrates low latency performance due to its asynchronous update mechanism and 

differential update sharing. As compared to FedAvg-ID, which pauses in the synchronous training rounds, 
EdgeSecFL does not pause and allows unreliable or occasionally connected devices. 

 Accuracy: EdgeSecFL balances compression and model integrity, maintaining high detection accuracy even in 
bandwidth-constrained conditions. Although FedHomeSec can work in the small-scale settings similarly, the 

structure of the model is not able to handle the heterogeneous traffic datasets and that significantly decreases its 
overall usefulness. 

 Privacy Score: Thanks to its integration of homomorphic encryption, secure multiparty computation (SMPC), and 
blockchain-backed audit trails, EdgeSecFL scores highest in privacy protection. FedAvg-ID does not have any 
encryption or privacy-preserving mechanisms by contrast, and is thus vulnerable to gradient leakage and 
adversarial inference attacks. 

 Scalability: EdgeSecFL’s use of adaptive client selection, dropout tolerance, and containerized aggregation enables it 
to scale across large IoT networks with minimal manual configuration. IoTFLGuard and TinyFedDetect have limited 
scalability with no orchestration capabilities and dynamic policy enforcement capabilities as EdgeSecFL has 
according to their parent CSPM and smart contract visitors. 

This comparative analysis demonstrates that EdgeSecFL stands out as a balanced and future-ready federated IDS 

framework, excelling in privacy, flexibility, and scalability without sacrificing performance. Other FL models provided trade-
offs along one or several dimensions, which underlines the fact that the layered security model, the modular architecture of 
EdgeSecFL can be reliable in terms of addressing the present and new intrusion detection in IoT-cloud infrastructures. 

VIII. POLICY, ETHICS, AND GOVERNANCE IMPLICATIONS 
While federated learning models like EdgeSecFL offer promising technical advantages in securing IoT-cloud 

infrastructures, their real-world deployment also raises critical ethical, legal, and policy concerns. As these systems 
increasingly influence decisions in sensitive domains such as national security, healthcare, finance, and critical 
infrastructure, developers and policymakers must evaluate not only how secure and scalable they are, but also how fair, 
explainable, and compliant they remain with global standards. 

A. AI in National Security: Risk-Benefit Trade-offs 
AI-based intrusion detection systems (IDS) may incur quicker responses to the threats and a reduced chance of 

human error. Such advances to the defense and public safety sectors.  However, such benefits come with significant risks. 
Federated learning models, despite their privacy-aware architecture, still require central coordination, trust in aggregators, 
and reliable behavior from edge devices, factors that adversaries could exploit if not properly governed. 

Faraz Ahmed (2024) [20] addresses this duality in his work on AI and cybersecurity policy frameworks, especially in 
the context of national and critical infrastructure defense. Intelligent application of AI in cybersecurity in the public sector 
requires the equilibrium of automation and control. There must be accountability tools against systems oversights, prejudice, 
or misuse of smart systems. In the context of EdgeSecFL, this means deploying the system with strict governance controls, 
risk-based access models, and continuous policy enforcement, especially in environments where false positives or missed 
alerts could have life-threatening consequences. 

B. Bias, Fairness, and Explainability in Federated IDS 

One of the unique ethical challenges in federated learning systems is the risk of unintended bias. This is because local 
models are only trained on dissimilar, data that might simply show local or device-specific traffic; resulting in skewed 
decision boundaries, such that what is anomalous in one setting is erroneously detected as benign or malicious in another. 

Moreover, the black-box nature of deep learning models, often used in FL-based IDS, makes explainability a major 
concern. Security analysts and system administrators must be able to interpret why a certain event was flagged as an 
intrusion, especially when responding to incidents or making compliance-related decisions. 

To address this: 
 Fairness-aware aggregation techniques should be employed, where model updates are weighted to avoid overfitting 

to dominant client data. 
 Interpretable ML methods such as LIME or SHAP could be integrated into the final decision layer of EdgeSecFL to 

offer context-sensitive explanations. 

 Auditable logs (e.g., via blockchain) can serve as transparency-enhancing tools to trace the origin and logic of 
detection decisions. 
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 Without these controls, EdgeSecFL—despite its technical merits could reinforce or introduce structural biases, 
especially in multi-tenant environments where client devices come from diverse administrative, geographic, or socio-
economic backgrounds. 

C. Global Standards and FL Compliance 
Federated learning frameworks must also comply with an expanding set of global data protection and AI governance 

regulations. Standards like the General Data Protection Regulation (GDPR) in the EU, the NIST Privacy Framework in the 

US, and ISO/IEC 27701 for privacy information management directly affect how federated data pipelines must be designed 
and maintained. 

Table 6: Ethical and Policy Frameworks for Federated IDS Models 

Framework/Standard Focus Area Relevance to FL and EdgeSecFL 

GDPR (EU) Data minimization, consent FL preserves data locality but must ensure local consent 
enforcement 

NIST AI RMF (USA) Trustworthy AI, risk 
management 

Requires explainability, resilience, bias control in FL models 

ISO/IEC 27701 Privacy Information 
Management 

Requires data handling and audit capabilities at the edge 

OECD AI Principles Human oversight, transparency Encourages accountable FL deployment in public sectors 

AI Act (proposed EU) High-risk AI regulation May categorize FL-based IDS as high-risk in critical applications 

 Table 6 summarizes the intersection between key global policy frameworks and federated IDS systems like 
EdgeSecFL. To remain viable, such systems must be adaptable to jurisdictional requirements and capable of embedding 
governance hooks that can audit compliance in real time. 

EdgeSecFL, like any advanced AI system deployed at scale, exists at the crossroads of technical innovation and ethical 
responsibility. Its success in securing IoT-cloud environments will depend not only on detection accuracy or communication 
efficiency, but also on how well it aligns with ethical principles, fairness metrics, and international policy mandates. As 
federated intrusion detection becomes more widespread, embedding ethical guardrails and policy integration mechanisms 
will be essential for fostering trust and accountability in its use. 

IX. FUTURE DIRECTIONS AND RECOMMENDATIONS 
Looking ahead, the evolution of federated intrusion detection systems like EdgeSecFL will hinge on addressing 

emerging challenges across scalability, transparency, and post-quantum resilience. A key recommendation is to advance 
edge-level decentralization, where aggregation responsibilities are distributed across multiple semi-trusted nodes to reduce 
reliance on central servers and improve fault tolerance. In parallel, there is a pressing need for explainable federated 
learning (XFL) frameworks that combine high detection accuracy with transparent, human-interpretable decision-making 

especially critical in regulated sectors like healthcare and defense.  

Moreover, as quantum computing progresses, it is essential to pursue quantum-ready FL training pipelines that 
integrate post-quantum cryptographic (PQC) primitives without compromising performance or scalability. However, it must 
be acknowledged that many of these components including lattice-based encryption protocols and AI-agent-based FL 
orchestration remain in experimental or non-standardized phases. To be fully absorbed into production ready-to-use IDS, 
they will need more research on topics of system compatibility, performance optimization, and regulatory acceptance 

 
Figure 7: Research Roadmap for Secure FL in IoT-Cloud Ecosystems 

By following this roadmap, the research community of FL can take advantage of pilot designs such as EdgeSecFL to 

come up with future-ready privacy-preserving, and ethically consistent security systems in an IoT-cloud distributed setting 
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X. CONCLUSION 
EdgeSecFL offers a robust and adaptable approach to intrusion detection within complex IoT-cloud ecosystems. By 

leveraging decentralized learning and secure model aggregation, it addresses key limitations of traditional centralized 
systems, such as bottlenecks, data privacy risks, and limited scalability. The privacy-aware coordination of the heterogeneous 
edge devices provided by the framework, allows keeping sensitive data local and collaboratively detecting the threats. A 
major strength of EdgeSecFL lies in its integration of complementary technologies, including blockchain for tamper-evident 

logging and cloud-native orchestration for resource-aware deployment. These design options improve transparency of the 
system, shorten operation latency, and facilitate the deployment in real world, where the devices are not always accessible 
and connected with each other consistently. 

Through comparative analysis with existing FL-based IDS models, EdgeSecFL demonstrates improved performance in 
areas such as latency, resilience, and privacy enforcement. It is modular and can be integrated with security policy standards 
such as CSPM, as well as fairness-aware and interpretable components used in trust-confined decisions of regulated or risky 
situations. The framework also reflects a thoughtful alignment with broader ethical and governance considerations. The 
problem of model bias, transparency, and alignment with data protection regulations are also directly answered and confirm 
the applicability of EdgeSecFL to be implemented in real life, both with a government and privately. 

Although some emerging technologies such as post-quantum cryptographic safeguards and AI-driven orchestration 
are not yet fully mature, EdgeSecFL establishes a solid foundation for their future integration. Further development must 

concentrate on advancing understandability of the models, support decentralized schemes of trust, and keep pace with the 
changing requirements of cryptography. EdgeSecFL represents a future-ready, ethically conscious, and technically sound 
solution for intrusion detection. Its balanced emphasis on security, scalability, and policy alignment positions it as a leading 
candidate for protecting distributed digital infrastructures in a privacy-sensitive and rapidly evolving threat landscape. 
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