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Abstract: The growing adoption of encryption protocols such as TLS 1.3, QUIC, and DNS-over-HTTPS has limited the 
effectiveness of traditional deep packet inspection, challenging conventional methods of network traffic analysis. In 
response, machine learning (ML) has emerged as a powerful alternative, enabling the analysis of encrypted and 
obfuscated traffic through side-channel features, flow metadata, and behavioral patterns. This review systematically 
examines the evolution of ML-based techniques for secure network traffic analysis, covering supervised flow 
classification, anomaly detection, and encrypted threat inference. We analyze key components such as feature 
extraction strategies, learning models, and benchmark datasets, and assess the effectiveness of ML-powered network 

intrusion detection systems (NIDS) in operational settings. Tools like Zeek, CICFlowMeter, and Suricata extensions are 
discussed in the context of practical deployment. Furthermore, the review addresses emerging challenges including 
data privacy, adversarial robustness, and model explainability. We conclude by identifying open research directions 
focused on integrating ML with threat intelligence, enhancing interpretability, and enabling scalable, privacy-
preserving detection in modern enterprise environments. 

Keywords: Machine Learning (ML), Encrypted Traffic Analysis, Intrusion Detection (NIDS), TLS 1.3, QUIC, Federated 
Learning, Explainable AI (XAI). 

I. INTRODUCTION 
In today’s hyperconnected digital environment, network traffic analysis has emerged as a cornerstone of modern 

cybersecurity [1] [2]. The increasing number of cyberattacks and their complexity demand that defenders should employ 
advanced methods to identify, categorize, and react to the malicious attempts moving across enterprise and cloud networks. 

In the conventional sense, Deep Packet Inspection (DPI) was used to offer a high degree of insight into a network payload; 
most importantly in identifying threats of malware, data or command-and-control (C2) communications[3]. The growing 
trend of handling encrypted traffic has, however, seriously reduced the effectiveness of the conventional DPI-based solutions 
[4].  

The most prominent change in the last 10 years was the massive shift of institutions to Transport Layer Security 
(TLS) and the various protocols of encrypting information during transit. This is evidenced by the fact that the amount of 
plaintext traffic has continued to decline in comparison to the encrypted traffic which has occupied most of the traffic 
occurring all over the world as is depicted in Figure 1. According to Google Transparency reports and Cisco’s Annual Internet 
Reports, most web traffic is now encrypted, rendering conventional payload inspection methods largely obsolete. 

 
Figure 1: Shift in Traffic Visibility: Plaintext vs. Encrypted Traffic Volume 



Anitha Mareedu / ESP IJACT, 3(2), 64-74, 2025 
 

65 

This growing encryption trend presents new challenges for network defenders[5]. Attackers now commonly embed 
malicious activity within encrypted sessions, relying on the fact that traditional detection tools cannot access the payload[6]. 
As a result, there is a growing shift towards machine learning (ML)-based techniques that analyze side-channel features such 
as packet timing, size, sequence patterns, and statistical flow metadata. ML models have proven capable of inferring 
application types, user behavior, and even potential anomalies without decrypting the traffic. Table 1 below outlines some of 
the key challenges faced by security analysts and automated systems in the modern traffic analysis landscape. 

Table 1: Overview of Key Challenges in Modern Network Traffic Analysis 

Challenge Description 

Encrypted Payloads Limits deep inspection; requires inference from metadata or side-channels 

Evasive Traffic Patterns Adversaries mimic benign behavior or fragment flows 

Volume and Velocity of Traffic High throughput environments overwhelm signature-based systems 

Data Labeling for ML Training Scarcity of labeled malicious flow data hampers supervised learning 

Privacy-Preserving Analysis Balancing detection effectiveness with user data confidentiality 

In this context, machine learning has become essential for achieving scalable, adaptive, and protocol-agnostic 
detection. Unlike signature-based detection, ML systems can generalize from observed traffic patterns and detect previously 
unseen attack vectors [7] . Furthermore, unsupervised and semi-supervised learning approaches are increasingly used to 
address data sparsity and class imbalance critical issues in real-world network environments. This review aims to explore 
the evolution of ML techniques applied to network traffic analysis, covering developments from basic flow classification to 
advanced encrypted threat detection. We survey key approaches, categorize them based on learning strategies and feature 
types, and analyze their strengths and limitations. The structure of the review is as follows: Section 2 provides a taxonomy of 
ML methods used in traffic analysis; Section 3 delves into flow-based classification techniques; Section 4 focuses on ML for 

encrypted traffic detection; Section 5 presents evaluation metrics and benchmark datasets; and Section 6 discusses 
limitations, open challenges, and future directions.By charting the progress of ML-powered traffic analysis over the past 
decade, this review highlights both its transformative impact and the critical hurdles that remain as network security enters 
a post-DPI era. 

II. FOUNDATIONS OF ML-BASED NETWORK TRAFFIC ANALYSIS 
The application of machine learning to network traffic analysis relies heavily on the nature of the input data, the 

formulation of learning tasks, and the design of suitable features. Before diving into detection strategies, it is essential to 
understand the foundational elements that underpin ML-based network traffic analysis systems. 

A. Types of Network Data 
Network traffic data can be captured and analyzed at different levels of granularity [8]: 

 Packet-level data captures individual packets, including headers and payloads (if unencrypted). It offers fine-

grained detail but is high in volume and complexity. 
 Flow-level data, such as NetFlow or IPFIX, aggregates packets into sessions based on source/destination IP, port, 

and protocol. While coarser, it is more scalable for real-time monitoring. 
 Metadata, such as TLS handshake fields, DNS queries, or protocol usage, offers privacy-preserving insights and is 

particularly useful for encrypted traffic. 

The choice of data source directly influences model design, feature engineering, and system performance. 

B. Common Machine Learning Tasks 
ML techniques are typically applied to one or more of the following [9] core tasks in network traffic analysis: 

 Classification: Assigning traffic to predefined categories, such as applications (e.g., Skype vs. HTTP) or 
benign/malicious flows. 

 Clustering: Grouping traffic patterns without labels to detect unknown services or anomalies. 

 Anomaly Detection: Identifying patterns that significantly deviate from normal behavior, often using unsupervised 
or semi-supervised approaches[10]. 

Supervised classification dominates academic literature, but anomaly detection is increasingly important in high-
security or zero-trust contexts. 

C. Feature Extraction Techniques 
Feature engineering plays a critical role in the success of ML models. Approaches can be broadly categorized into: 

 Manual Feature Extraction: Involves designing statistical and time-based metrics such as packet count, flow 
duration, inter-arrival times, and byte ratios. Tools like CICFlowMeter have standardized this process. 
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 Automated Feature Learning: Deep learning models, particularly Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), have been used to learn representations directly from raw byte streams or 
flow sequences (e.g., Deep Packet, DeepFlow). 

While automated approaches reduce the need for expert-crafted features, they often require substantial training data 
and computational resources. 

D. Overview of Benchmark Datasets 

The development and evaluation of ML-based traffic classifiers rely on publicly available datasets. Table 2 lists widely-
used datasets, highlighting their relevance, scale, and encryption support. 

Table 2: Benchmark Datasets for Network Traffic ML 

Year Size Data Type Encryption Support Notes 

2017 ~80 GB Packet/Flow Partial (VPN) Widely used for intrusion detection 

2016 ~12 GB Packet Yes Focused on VPN and Tor traffic 

2016 ~8 GB Packet Yes Encrypted traffic classification 

2020 ~50 GB Flow Yes Includes botnet C2 traffic over TLS 

2020 Variable Flow Mixed Emphasizes IoT traffic scenarios 

2013 ~25 GB Flow No Classic malware traffic dataset 

These datasets vary in format and scope, with more recent corpora (e.g., CIC-Darknet2020) focusing on encrypted, 
evasive threats. However, a significant challenge remains in obtaining labeled datasets that represent real-world encrypted 
traffic with sufficient diversity and up-to-date threats. 

 
Figure 2: ML Pipeline for Traffic Analysis 

III. FLOW CLASSIFICATION AND APPLICATION IDENTIFICATION 
One of the earliest and most widespread applications of machine learning in network traffic analysis is flow 

classification [11], the task of assigning traffic flows to specific applications or protocols based on observable characteristics. 

Accurate flow classification enables not only traffic engineering and QoS management, but also foundational threat detection 
and policy enforcement in security operations. With the rise of encryption and obfuscation, traditional port-based or DPI-
based classification methods have become less reliable[12]. ML offers a robust alternative by learning statistical and 
behavioral patterns in network traffic, even when the payload is encrypted. 

A. Supervised Learning for Flow Classification 
Supervised learning remains the dominant paradigm for flow classification due to the availability of labeled datasets 

and its effectiveness in controlled environments [13]. These models learn mappings from a set of engineered features such as 
packet counts, duration, inter-arrival times, and byte volumes to known protocol or application classes. 

a) The Five-Tuple Foundation 
At the heart of flow classification lies the five-tuple representation of traffic: source IP, destination IP, source port, 

destination port, and transport protocol [14]. These identifiers are used to group packets into sessions, from which temporal 

and statistical features can be extracted. As illustrated in Figure 3, these features are then fed into an ML model to output a 
predicted class. 

B. Protocol and Application Inference 
The task of flow classification is frequently to determine applications (e.g. Skype or Netflix) or protocol types (e.g. 

HTTP or VoIP) without examining payload contents. This is especially important in networks where a high percentage of 
traffic is using TLS or VPN, and deep packet inspection cannot be used. 
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a) Management of Encrypted and Evasive Traffic 
Identification is compounded by protocols such as QUIC, DNS-over-HTTPS (DoH) and VPN tunnel. Being able to learn 

recognizable flow properties of such traffic, ML models have demonstrated potential in profiling its behavior based on 
session timing and packet size distributions and connection characteristics without requiring the traffic to be decrypted. 

C. ML Models employed in Flow Classification 
There is a broad range of machine learning algorithms that have been used to address flow classification: each of 

them has alternative trade-offs in terms of interpretability, accuracy, and scalability. 

a) Classical Algorithms 
RFs and SVMs were always preferred because of the property of interpretability and moderate computational needs. 

Specifically, RF does well in data sets such as CICIDS2017 that have the high dimension manual features. 

b) Deep Learning Models 
Convolutional Neural Networks (CNNs) have been modified to treat packet streams as images or time-sequences 

matrices [15], to extract spatial patterns in flow properties. A type of RNN, Long Short-Term Memory (LSTM) networks, 
have demonstrated their capability to model sequential dependencies in packets suited to rhythmic or periodic traffic. The 
tabular representation 3 below presents summary of the representative studies and models applied to flow classification. 

Table 3: ML Algorithms Used for Flow Classification 

Algorithm Dataset Notes 

Random Forest CICIDS2017 Manual features; good performance, fast 

SVM ISCXVPN2016 VPN detection; struggles with scalability 

CNN USTC-TFC2016 Learns from byte patterns in packet streams 

LSTM DeepFlow (Custom) Effective for temporal flow modeling 

Hybrid CNN-LSTM CIC-Darknet2020 Combines spatial and temporal dependencies 

D. Performance Considerations and Limitations 
While many ML models demonstrate high accuracy in laboratory settings, their performance can degrade significantly 

in real-world environments due to factors like traffic heterogeneity, class imbalance, and concept drift. Furthermore, 
encrypted traffic generated by adversarial tools (e.g., Cobalt Strike over HTTPS) can mimic benign application flows, leading 
to false negatives [16]. Efforts to mitigate these issues include ensemble learning, domain adaptation, and transfer learning, 
which aim to improve generalization across datasets and evolving threat profiles. However, these approaches remain active 
areas of research, and standardized evaluation frameworks 

IV. ANOMALY AND INTRUSION DETECTION 
As encryption and protocol obfuscation render traditional signature-based Network Intrusion Detection Systems 

(NIDS) less effective, anomaly-based detection, particularly using machine learning (ML) has gained momentum. ML 

methods can uncover subtle, previously unseen threats such as malware command-and-control (C2) traffic, low-rate DDoS 
attacks, and stealthy port scans, all without requiring decrypted payloads or fixed rule signatures. Unlike supervised 
classification models, which require extensive labeled datasets, anomaly detection focuses on identifying deviations from 
normal network behavior, making it well-suited for zero-day threats and evolving attack patterns. 

A. Unsupervised and Semi-Supervised Learning in NIDS 
a) Unsupervised Learning Approaches 
Unsupervised models assume no prior knowledge of malicious activity. These models build profiles of normal traffic based 
on statistical, temporal, or spatial characteristics and flag outliers as potential threats. Techniques used include: 

 Autoencoders: Neural networks trained to reconstruct benign traffic features; anomalies yield higher reconstruction 
errors. 

 Clustering (e.g., k-Means, DBSCAN): Groups similar flows together; isolated or loosely connected points are flagged 

as suspicious. 
 Principal Component Analysis (PCA): Reduces dimensionality and isolates traffic that diverges from principal 

components. 

b) Semi-Supervised Learning 
Semi-supervised methods blend limited labeled data with large amounts of unlabeled traffic. This hybrid approach 

improves generalization while reducing annotation costs. One popular strategy is one-class classification, where the model 
learns only from benign examples and treats any deviation as malicious. 
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B. Detection of Specific Attack Patterns 
a) Malware Command and Control (C2) Channels 

C2 traffic is often encrypted and low-volume to avoid detection. ML models have been used to detect these by 
identifying repetitive patterns in outbound sessions, beaconing intervals, or unusual TLS handshake attributes. 

b) Distributed Denial of Service (DDoS) 
ML is especially effective in early detection of volumetric and application-layer DDoS attacks. Features such as packet 

rate, flow diversity, and SYN flag counts are commonly used. Ensemble models and deep learning have been adopted in 
scenarios requiring high throughput and low false-positive rates. 

c) Port Scanning and Probing 
Unusual connection attempts to multiple ports or hosts can signal reconnaissance activity. ML models use behavioral 

indicators such as connection attempt frequency, SYN/ACK ratios, and destination entropy to identify scans, including 
stealth variants. 

C. ML-Based NIDS 
Over the last decade, numerous ML-powered NIDS have been proposed and implemented. A few notable systems are: 

 Kitsune (2018): A lightweight online autoencoder-based NIDS designed for IoT networks, capable of learning in real 
time [17]. 

 DeepPacket (2019): A deep learning model (CNN + BiLSTM) for encrypted packet classification and intrusion 

detection. 
 DeepIDS (2021-2022): Deep learning-based network intrusion intrusion detection measurement of advanced 

persistent threats (APTs) using stacked autoencoders to extract features of raw flow data. 

D. Comparative comparison of ML-NIDS 
Although every system has distinct prerogatives when it comes to precision, flexibility, and the complexity of 

deployment, there is no single-solution. Table 4 gives the comparison of leading ML-based NIDS solutions to 2024 by the 
basic metrics. 

E. Current Limitations 
Although tremendous progress has been made around it, ML-based NIDS remain to be problematic in terms of false 

negatives, concept drift, and generalization over datasets, and evasion attacks. In addition, most of the proposed models test 
only on synthetic datasets and their capability of performance in the real world is low. Continuous learning, federated model 

training, and explainable AI (XAI) are some of the efforts that are being tried to fill this gap. By the end of 2024, 
incorporating such models into the production environments is an intricate but swiftly changing domain. 

V. TRAFFIC ENCRYPTION ANALYSIS 
Using TLS 1.3, QUIC, and DNS-over-HTTPS (DoH) are Internet-wide encryption protocols that have had an enormous 

effect on network traffic. At the same time, payload inspection, application recognition and malicious activity detection based 
on conventional tools such as DPI are hampered by the layer and payload encryption, which add privacy and confidentiality 
capabilities. 

A. Impact of Modern Encryption Protocols 
a) TLS 1.3 and QUIC 

With the release of TLS 1.3 in 2018 and its growing adoption, critical metadata such as certificate details, cipher 

cipher suites, and server names (SNI) are often encrypted or removed from the handshake. Similarly, QUIC, which runs over 
UDP and incorporates encryption into its transport layer, obscures much of the traffic previously visible through TCP-based 
inspection [18]. 

b) DNS-over-HTTPS (DoH) 
Introduced to encrypt DNS queries over HTTPS, DoH conceals domain resolution activities from both ISPs and local 

network monitors, disrupting visibility into user intent and blocking strategies based on domain name analysis[19]. These 
shifts have rendered DPI largely ineffective for encrypted sessions, especially in detecting malware command-and-control 
(C2) channels, VPN tunnels, and covert HTTPS-based exfiltration. 

In response, researchers and practitioners have increasingly promised to use machine learning (ML) to examine 
encrypted traffic via side-channel characteristics; visible features of traffic flows against which the encrypted payload cannot 
be hidden. 
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Table 4: Comparison of ML-Based NIDS Techniques 

System Year ML Approach Deployment 
Target 

Strengths Limitations 

Kitsune 2018 Online 

Autoencoder 

IoT/Edge Devices Real-time detection, 

lightweight 

Limited depth in complex 

attacks 

DeepPacket 2019 CNN + BiLSTM Enterprise 
Network 

Handles encrypted traffic Requires GPU for training 

DeepIDS 2021 Stacked 
Autoencoders 

General NIDS Detects APT-like 
behaviors 

Needs high-quality normal 
data 

RCNIDS 2023 Recurrent CNN Cloud 
Environments 

Effective on bursty traffic Longer training and 
inference times 

FlowGuard 2024 Hybrid GNN + 
SVM 

SDN/5G Networks Context-aware detection Early-stage research, not 
scalable 

B. ML for Encrypted Traffic Classification 
To regain visibility, ML models analyze encrypted flows using non-payload features such as packet size distributions, 

flow lengths, and timing sequences [20]. These models can infer application types, tunnel usage, and potentially malicious 
activity, all without decrypting the payload. 

 
Figure 5: Feature Abstraction from Encrypted Flows 

C. Side-Channel Feature Engineering 
The most informative and commonly used side-channel features for ML-based encrypted traffic analysis include [21]: 

 Packet size distributions: Mean, variance, and histograms of packet sizes. 

 Inter-packet timing: Time gaps between consecutive packets. 
 Flow duration and burstiness: Duration of flows and concentration of data bursts. 
 Packet directionality: Ratios of incoming to outgoing packets. 
 TLS handshake metadata (when available): Protocol versions, extension fields, etc. 

Deep learning methods, especially CNNs and LSTMs have demonstrated effectiveness in automatically learning these 
patterns from time-series flow data [22]. 

D. Use Cases and Examples 
a)  VPN and Tunneling Detection 

ML has been widely applied to VPN detection, even when traffic is encrypted end-to-end. For instance, DeepVPN 
(2020) and similar models apply CNNs to TLS metadata and flow shape to distinguish between VPN providers such as 
OpenVPN, WireGuard, and commercial VPNs like NordVPN. 



Anitha Mareedu / ESP IJACT, 3(2), 64-74, 2025 
 

70 

b) HTTPS-Based Threat Detection 
Encrypted tunnels using standard ports (e.g., 443) are often abused for malware communication and data 

exfiltration. ML-based approaches detect such misuse by identifying abnormal patterns in session lengths, server response 
behavior, and periodicity in outbound traffic. Studies published (e.g., "FlowPrint", "SPLAT", and "TLS-Fingerprinting") have 
demonstrated >95% accuracy in distinguishing between benign and malicious HTTPS tunnels. 

E. Limitations and Emerging Challenges 

Despite promising accuracy, many encrypted traffic classifiers face real-world deployment challenges: 
 Generalization across networks with different traffic characteristics. 
 Adversarial evasion through padding, flow shaping, or mimicry. 
 Lack of labeled encrypted datasets, especially for VPN or malware traffic. 

Recent research explores federated learning, online adaptation, and explainable AI to improve robustness, 
interpretability, and real-time applicability in encrypted environments. 

VI. PRIVACY-PRESERVING AND ADVERSARIAL CHALLENGES 
As machine learning becomes integral to network traffic analysis, it introduces new risks related to data privacy, 

model robustness, and adversarial manipulation. Sensitive network flows could be trained on models that may leak sensitive 
information about one or more users; also, a model trained on sensitive network traffic patterns can be easily compromised 
by an attacker using an evasion attack. To make deployment of ML-powered network security systems trustworthy, it is 

important to deal with these problems. 

A. Training Risk on Traffic Sensitive Data 
Personally identifiable information (PII), behavioral patterns, enterprise service metadata, and DNS queries (and even in 
flow-level form) are quite common in network traffic. In the case of training with the improper use of such data[23]: 

 There is a possibility of models learning to memorize patterns that can be read by their attacker in terms of 
individual session or device information via modeling inversion or reconstruction. 

 Centralized data collection from user endpoints or edge devices raises compliance concerns with regulations like 
GDPR and HIPAA. 

These concerns have led to growing interest in privacy-preserving learning frameworks, particularly in security-
sensitive and regulated environments. 

B. Federated Learning and Differential Privacy 

a) Federated Learning (FL) 
Federated learning enables ML models to be trained locally at endpoints or edge devices, with only the updated model 

parameters shared with a central server. This technique eliminates the need to transmit raw traffic data to a central 
repository[24]. 

 In the context of traffic analysis, FL has been explored in projects like FedPacket and FedNIDS, which train flow 
classifiers across distributed environments without exposing local datasets. 

 Challenges remain in model drift, non-IID data, and synchronization overhead, especially in real-time detection 
systems. 

b)  Differential Privacy (DP) 
Differential privacy introduces statistical noise into either the input data or model parameters to ensure that 

individual contributions remain untraceable. 
 Applied to NIDS systems, DP protects user-level patterns in training data. 
 However, adding noise can reduce detection sensitivity, especially for rare or subtle anomalies like beaconing C2 

traffic. 

Research in DP-compliant autoencoders and LSTM models for encrypted traffic classification is ongoing, with trade-
offs between utility and privacy still being evaluated. 

c) Adversarial Examples in Traffic Classification 
 ML models are inherently vulnerable to adversarial examples input data that has been subtly manipulated to 

mislead the classifier. In the context of traffic analysis: 
 Attackers can shape packet timings, add dummy packets, or pad flow lengths to evade detection. 

For instance, adversaries have used mimicry techniques to make malware flows resemble Netflix or HTTPS sessions, 

bypassing ML-based detectors. Studies such as AdvNet  and NetFool  demonstrated the feasibility of generating adversarial 
flows capable of deceiving both classical and deep models without altering the core malicious functionality. 
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d) Robustness Testing of Models 
Given the growing threat of adversarial evasion, robustness testing is becoming a necessary step in the ML pipeline for NIDS. 
Key techniques include: 

 Adversarial training: Incorporating adversarial flows during model training to improve resilience. 
 Gradient masking: Obfuscating decision boundaries to prevent precise gradient-based attacks. 
 Black-box evaluation: Testing detection models against unknown and adaptive threats without direct access to 

model internals. 

Despite these efforts, no standard benchmarking framework exists for evaluating the robustness of ML-based traffic 
analysis models under real-world adversarial conditions. This remains a pressing research gap in the domain. 

VII. TOOLS, FRAMEWORKS, AND REAL-WORLD DEPLOYMENT 
While machine learning has demonstrated strong potential in network traffic analysis within academic literature, the 

transition from research to real-world deployment has proven to be complex. Practical adoption depends not only on 
detection accuracy but also on integration feasibility, performance, interpretability, and maintainability within live enterprise 
environments. This section surveys prominent ML-supported frameworks, contrasts research prototypes with operational 
deployments, and outlines key deployment challenges. 

A. Key Frameworks and Tools  
A variety of open-source and research-driven frameworks have emerged to facilitate ML-based traffic analysis. These 

tools typically focus on feature extraction, real-time processing, or detection logic integration with existing network 
monitoring systems. 

a) Zeek + ML Integration 
Zeek (formerly Bro) is a powerful network security monitor that has gained popularity for its extensibility [25]. While Zeek 
itself does not natively support machine learning, several research efforts and third-party extensions have enabled ML 
workflows: 

Feature exports from Zeek logs (e.g., conn.log, ssl.log) serve as structured input to external classifiers. Projects like 
ML-Zeek (2022) and custom Python-based pipelines integrate pre-trained models with Zeek logs to detect anomalies in TLS 
handshakes or behavioral flows. 

b) CICFlowMeter 
Developed by the Canadian Institute for Cybersecurity, CICFlowMeter is a widely adopted tool for converting packet 

capture (PCAP) files into labeled flow-based datasets with over 80 statistical features per flow. It is the backbone for 
numerous datasets including CICIDS2017, ISCXVPN2016, and CIC-Darknet2020. 

 Benefits: Compatible with Python/Scikit-learn, easy integration with ML pipelines. 
 Limitations: Designed for offline analysis, less suitable for real-time environments. 

c) Suricata ML Extensions 
Suricata, an open-source IDS/IPS engine, introduced support for EVE JSON logs and metadata tagging, making it 

feasible to couple with ML inference systems. Research prototypes (e.g., Suricata-ML Bridge) demonstrated flow-based 
detection using external classifiers. Still in experimental stages; lacks native ML module. 

B. Research Prototypes vs. Commercial Integrations 
While academia has produced a wide array of promising models, most commercial network detection and response 

(NDR) systems still rely heavily on heuristic, signature, or behavioral baselining methods. ML is used in the background, 
often with proprietary datasets and little transparency. 

a) Research Prototypes 
 Typically built on synthetic or open datasets. 
 Favor accuracy over operational constraints like latency or memory usage. 
 Emphasize innovation (e.g., adversarial detection, encrypted traffic classification). 

b) Commercial Implementations 
Some commercial security solutions began integrating ML, including: 

 Darktrace: Uses self-learning ML to model network behavior and detect anomalies. 
 Vectra AI: Leverages flow metadata and deep learning to identify lateral movement and encrypted threat activity. 
 Cisco Secure Network Analytics (formerly Stealthwatch): Introduced ML-based anomaly detection modules for 

encrypted traffic. 
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However, full ML-based detection pipelines remain rare in enterprise deployments due to operational risks. 

C. Barriers to Real-World Deployment 
Despite technical maturity in experimental settings, several barriers still prevent widespread deployment of ML-based 
network detection models: 

 Performance Constraints: Many deep learning models require GPUs or extensive CPU resources, limiting scalability 
in high-throughput environments. 

 Lack of Explainability: Security analysts are reluctant to trust "black box" models, especially in regulated sectors like 
healthcare or finance. 

 Data Labeling and Drift: Realistic training data is scarce, and models degrade over time due to concept drift. 
 Integration Overhead: Linking ML workflows to existing SIEMs, firewalls, and data lakes introduces additional 

operational complexity. 

Table 7: ML Frameworks for Network Traffic Analysis 

Framework Type Strengths Limitations 

Zeek + ML Log-based Highly extensible, used in SOC 
workflows 

Requires external ML integration 

CICFlowMeter Flow converter Rich feature set, widely adopted in 
research 

Not real-time, mostly offline processing 

Suricata-ML Bridge IDS extension Real-time capability, open-source 
foundation 

Still experimental, lacks native ML 
module 

ML-NIDS 
Prototypes 

Academic 
systems 

High detection accuracy on testbeds Rarely production-ready, limited 
interpretability 

Darktrace / Vectra 

AI 

Commercial Scalable, anomaly detection over 

encrypted flows 

Proprietary models, limited 

transparency 

VIII. FUTURE  RESEARCH DIRECTIONS 
As machine learning continues to reshape network traffic analysis, several promising research directions are 

emerging—particularly in response to growing encryption and adversarial sophistication. One major opportunity lies in 
developing context-aware models capable of correlating encrypted traffic patterns with behavioral baselines, device profiles, 
and endpoint signals to infer intent without payload access. Additionally, integrating ML with threat intelligence feeds and 
graph-based analytics (e.g., using communication graphs or flow graphs) could enable systems to detect lateral movement, 
coordinated attacks, or multi-stage intrusions that are difficult to capture using isolated flow analysis. Another pressing need 
is for interpretable and auditable ML models that can justify detections to human analysts, satisfy compliance requirements, 
and facilitate forensic investigations, especially in sectors such as healthcare, critical infrastructure, and finance.  

Techniques like attention mechanisms, rule extraction, and explainable AI (XAI) frameworks are being explored to 
address this. Lastly, for ML-based NIDS to achieve real-world impact, future research must emphasize scalable and realistic 
deployment models within enterprise Security Operations Centers (SOCs). This involves working on resource-efficient 
models, modular architectures which interface well with SIEMs and SOAR systems, and strong concept-drift and moving 
threats mechanisms. The challenge that is most serious and interesting in this area is how to fill the gap between the 
innovation and the application of the research work.  

IX. CONCLUSION 
Machine learning has recently become an emerging core technology in a new approach to secure network traffic 

analysis, providing more powerful techniques of visibility, detection and automated responding to threats in a world where 
in far too many cases it is clear that computing really is encryption marked and money talked when it comes to getting direct 
access to traffic at the interface level. The review described the evolvement of ML methods, where the initial ML methods 

were classical supervised classifiers used to solve the task of flow identification, to most recent advanced deep learning 
models that can deal with encrypted patterns and discover hidden threats. We discussed vital aspects of the ML pipeline such 
as feature engineering, benchmarking datasets, model architectures, and evaluation methods. Our academic and practice 
survey showed us encouraging new developments and existing gaps. 

While research prototypes have demonstrated high accuracy in identifying application types, VPN usage, and 
anomalous behaviors, real-world deployment still faces challenges related to computational overhead, lack of interpretability, 
model brittleness under adversarial conditions, and limited access to diverse, up-to-date datasets. Moreover, the growing use 
of privacy-preserving protocols like TLS 1.3 and QUIC, as well as adversarial techniques like flow mimicry and traffic 
shaping, underscore the need for more robust, context-aware, and adaptive detection systems. The integration of ML with 



Anitha Mareedu / ESP IJACT, 3(2), 64-74, 2025 
 

73 

emerging technologies such as graph analytics, federated learning, and explainable AI offers promising pathways to address 
these limitations.  

However, for machine learning to become truly operational in enterprise Security Operations Centers (SOCs), it must 
go beyond accuracy metrics and address real-world constraints such as alert fatigue, system interoperability, and regulatory 
compliance. In essence, while ML is no longer a speculative tool in network security, its practical adoption requires a shift 
from isolated model development to end-to-end, resilient, and interpretable systems. Bridging the gap between research 

innovation and operational deployment remains the foremost challenge—and opportunity—for the cybersecurity community 
in the years ahead. 
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