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Abstract: Transformer-based language models have achieved state-of-the-art performance on NLP classification tasks, but 
full fine-tuning of all model parameters is resource-intensive. This article surveys efficient alternatives to full fine-tuning 
for smaller transformer models (e.g., BERT-base or similar) in classification settings. We compare parameter-efficient 
tuning methods (such as adapter modules and LoRA), model pruning (e.g., removing transformer layers), and 
quantization. We discuss how each technique affects training and inference speed, memory footprint, and model 
performance. Experiments on representative classification tasks (such as sentiment analysis and topic classification) 
illustrate that these methods can dramatically reduce computational requirements with minimal loss in prediction 
performance compared to full fine-tuning. Based on the results, we offer recommendations for deploying transformer 

models under resource constraints. 
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I. INTRODUCTION 
Transformer-based language models like BERT and its variants have become standard backbones for NLP classification 

tasks. Fine-tuning a pre-trained transformer on a downstream task typically involves updating all of its parameters. While 
effective, full fine-tuning is computationally expensive: a new set of model weights (hundreds of millions of parameters) must be 
stored for each task, and the backpropagation updates over all these parameters require significant memory and compute. For 
organizations or applications with limited computational resources or the need to serve many tasks, full fine-tuning may be 
impractical. This has spurred research into more parameter-efficient and computationally efficient adaptation techniques that 
achieve almost the same performance as full fine-tuning while using significantly fewer resources. 

In this paper, we focus on three categories of efficient alternatives: (1) Parameter-efficient fine-tuning methods that 

introduce a small number of additional parameters (or selectively tune a subset of parameters) instead of modifying the entire 
model, (2) Model pruning techniques that reduce the size or complexity of the model (e.g., by removing some transformer layers 
or weights), and (3) Model quantization which involves using lower-precision representations to speed up inference and reduce 
memory usage. We discuss how each approach accelerates training/inference and lowers memory requirements, and we quantify 
the performance trade-offs compared to the baseline of full-model, full-precision fine-tuning. 

II. PARAMETER-EFFICIENT FINE-TUNING METHODS 
Fine-tuning all parameters of a transformer is overkill when adapting to a specific task intuitively; a pre-trained language 

model already encodes a great deal of linguistic knowledge, so only a small change may be needed for a new classification task. 
Parameter-efficient fine-tuning (PEFT) methods aim to achieve competitive performance by training only a small fraction of 
parameters while keeping most of the pre-trained model weights fixed. This not only reduces the number of parameters that 
must be updated (and stored) for each task, but often also lowers the computational cost of training (since gradients for the 

frozen parameters need not be computed). 

A. Adapters: Lightweight Task-Specific Layers 
Adapter modules are small neural network layers inserted at various points of a transformer, as introduced by Houlsby et 

al. [1]. In a typical adapter design for BERT-sized models, each transformer layer receives an adapter: a down-projection feed-
forward layer followed by an up-projection, with a non-linearity in between. The adapter acts as a bottleneck that can learn task-
specific transformations while the original transformer weights remain unchanged. Only the adapter parameters (and perhaps 
layer-norms) are trained on the new task, which is a tiny fraction of the total parameters. 
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Figure 1: Adapter Integration in Transformer Architecture 

Figure 1: Adapter modules inserted into a Transformer layer (yellow boxes). Each adapter consists of a "Feed-Forward 

Down" projection (which reduces the dimensionality), a non-linearity, and a "Feed-Forward Up" projection back to the original 
dimension.  

Training just these adapter layers achieves performance nearly matching full fine-tuning. Houlsby et al. report that on the 
GLUE benchmark, BERT with adapters reaches within 0.4% of fully fine-tuned BERT's accuracy while adding only about 3.6% 
additional parameters per task [1]. By comparison, full fine-tuning updates 100% of parameters for each task. Adapters 
significantly reduce storage requirements when deploying models for multiple tasks (saving only small adapter weights rather 
than entire models) and enable multi-task deployment by swapping different adapters as needed. 

In terms of speed and memory, adapter-based tuning has advantages during training: the backward pass only needs to 
compute gradients for the adapter weights, not the entire model, which reduces memory usage for optimizer states and can 
slightly accelerate training. In inference, the adapters introduce only a small overhead (a few additional matrix multiplications 
per layer). The increase in inference latency is usually negligible because the adapters are very small compared to the original 

model's layers. Empirically, adapters yield almost the same inference speed as the base model and require only a minor increase 
in model size in memory (the base model plus a few percent extra parameters). Adapters are thus an attractive solution when 
one wants to maximize model reuse and minimize per-task cost. They have been successfully used not only for single-task fine-
tuning, but also in multi-task or continual learning settings where a single model with different adapters can handle many tasks. 

B. LoRA: Low-Rank Adaptation of Weights 
Importantly, LoRA maintains performance when properly configured. It can match or slightly exceed full fine-tuning 

accuracy on language understanding benchmarks. Experiments show LoRA achieves the same performance as full fine-tuning for 
RoBERTa and DeBERTa models (even DeBERTa XXL with 1.5B parameters) on GLUE tasks [2]. The low-rank constraint isn't 
limiting for typical classification tasks if the rank is sufficient for task-specific adjustments. In practice, rank r might increase for 
complex tasks, but even a rank <1% of the original dimension often suffices. 

At inference time, LoRA introduces no additional latency if updates are merged into the original weights (W' = W + AB). 
This makes inference speed and memory usage identical to a fully fine-tuned model. Even without merging, the overhead is 
minimal for small r values, offering nearly zero-cost inference adaptation. 

Besides adapters and LoRA, other PEFT strategies include fine-tuning only the last layers, BitFit (fine-tuning only bias 
terms, reaching near full fine-tuning performance while updating just 0.1% of parameters) [3,4], and prompt/prefix tuning. 
Adapters and LoRA typically outperform simpler methods with moderate data, but combinations like LoRA with trained biases 
can be effective. 



Bijo Benjamin Thomas / ESP IJACT, 3(3), 1-7, 2025 

3 

In summary, PEFT methods like adapters and LoRA enable multiple tasks to share one base model efficiently, accelerate 
training, reduce memory usage, and maintain performance on classification tasks [1][2]. They're highly effective for edge device 
deployment or sharing models across many tasks. 

III. MODEL PRUNING AND LAYER REDUCTION 
While parameter-efficient fine-tuning methods maintain the original model architecture by reducing the trainable 

parameters, model pruning directly removes or disables parts of the model to decrease computational cost and memory usage. 

Pruning can target individual weights, neurons, attention heads, or entire layers, eliminating redundancies and making models 
lighter and faster at inference. 

A. Layer Pruning and Distillation 
Layer pruning involves removing transformer layers to directly reduce network depth. For instance, pruning a 12-layer 

BERT-base model to 6 layers cuts parameters and computational costs roughly by half. DistilBERT exemplifies this approach by 
distilling knowledge from a 12-layer BERT into a 6-layer model. This results in a 40% smaller and 60% faster model at 
inference, retaining about 97% of BERT's performance on language tasks [5]. On benchmarks like SST-2 or MNLI, a 6-layer 
DistilBERT typically achieves accuracy within 1–3 points of the original BERT. This demonstrates that a substantial reduction in 
layers is possible with only a small accuracy penalty, especially if we use distillation (i.e., a teacher-student training process) to 
transfer knowledge from the full model to the pruned model. 

For classification tasks, a 6-layer DistilBERT typically achieves accuracy within 1–3 points of the 12-layer BERT on 

benchmarks like SST-2 or MNLI, offering nearly 2× speed gains and significant memory reduction suitable for limited hardware 
(e.g., mobile or real-time systems). Pruning further (to 3–4 layers) can further accelerate inference but may cause a notable 
accuracy drop. Nonetheless, careful distillation allows aggressive pruning to yield strong results. Models like TinyBERT (4 layers) 
and MobileBERT (using a bottleneck structure) achieve high accuracy despite their reduced size, though they require 
sophisticated training beyond simple fine-tuning. 

Direct pruning without dedicated distillation can involve fine-tuning the full model first, pruning layers afterward, and 
then briefly re-tuning to restore accuracy. Another strategy is pruning during fine-tuning, dropping less important layers 
progressively. LayerDrop (Fan et al., 2019) randomly removes layers during training, enabling dynamic trade-offs between speed 
and accuracy at inference. 

Practically, inference speed and memory usage scale proportionally with layer reduction: pruning 50% of layers typically 
doubles speed and halves memory for activations, with corresponding model size reductions on disk and in memory. The 

primary challenge is maintaining performance, often addressed effectively through knowledge distillation. 

B. Weight Pruning and Sparsity 
Fine-grained weight pruning zeros out unimportant weights in transformer matrices with minimal impact on predictions. 

Movement pruning (Sanh et al., 2020) gradually prunes weights during fine-tuning by considering the movement of weights 
toward zero. This, plus distillation, resulted in BERT models with 5% of original weights while retaining 95% of original 
accuracy [6]. For example, a BERT-base pruned to 6% of weights reached 80.7% MNLI accuracy (vs ~84.5% for dense model), 
reducing encoder size from 340MB to just 11MB [11,12]. 

The benefit of unstructured weight pruning is primarily model size reduction and some memory bandwidth savings. If 
90% of the weights are zero, we can store the model in compressed sparse format. However, speed-up from unstructured 
sparsity is hardware-dependent. On CPUs or specialized accelerators that efficiently skip zeros, sparse models gain speed. On 

GPUs, unless sparsity is structured (e.g., entire 16xN blocks are zero), compute units might not fully benefit from random 
sparsity. Some efforts leverage 2:4 sparsity (50% of weights zero in a structured pattern), which NVIDIA's Ampere GPUs can 
accelerate, but general 90% sparse matrices might not see a 10× speedup on typical GPU libraries. Lagunas et al. (2021) found 
that a 95%-sparse BERT achieved about 5× speedup on an A100 GPU and 12× on an older V100 GPU using optimized sparse 
kernels [7], suggesting future hardware improvements could enable much faster sparse model execution. 

Beyond weight pruning, attention head pruning is another structured approach. Michel et al. (2019) showed that a 
significant fraction of heads from BERT or translation models can be pruned with negligible performance loss, especially in later 
layers. Removing entire heads yields a model with smaller matrices (e.g., pruning 2 of 12 heads effectively shrinks some matrix 
dimensions), translating to real speed gains when implementation skips pruned heads. 
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The final pruned model uses less memory and runs faster. Pruning can combine with quantization (sparse + low-bit) for 
further gains, and with parameter-efficient tuning like LoRA to create models that are both small and fast. Pruning effectively 
trades some accuracy for efficiency, and with careful methods, accuracy loss can be minor, even with large speed/size gains, 
making it valuable for maximum speed requirements or small device deployment. 

IV. QUANTIZATION 
The third major approach to improve efficiency is quantization, which involves representing the model's numbers with 

lower precision. Transformers are typically trained in 32-bit floating point (FP32) or 16-bit (FP16) precision. By using 8-bit 
integers (INT8) or other low-bit formats for model weights (and even activations), we can shrink the model size and potentially 
speed up inference by using faster integer arithmetic. 

A. 8-bit (INT8) Quantization 
Quantizing a model to 8-bit means that each weight is stored as an 8-bit integer instead of a 32-bit float. This immediately 

gives a 4× reduction in memory usage for model weights. For example, a BERT-base model (110M parameters), which is ~440 
MB in FP32, can be compressed to around 110 MB with INT8 weights.  

Research by Zafrir et al. (2019) showed this approach maintains 99% of the original accuracy on NLP tasks [9]. Their 
Q8BERT quantized all fully connected and embedding layers (>99% of parameters), making the model footprint 4× smaller than 
the original [9]. Subsequent work and tools have made 8-bit quantization of transformers even easier, often not even requiring 
full QAT – instead, one can use post-training quantization with a small calibration set to determine scaling factors for weights 

and activations. 

Beyond size benefits, 8-bit operations significantly improve inference speed on compatible hardware. Intel CPUs with 
AVX512 VNNI show ~3.7× speedup for BERT inference [9], while NVIDIA Tensor Cores (Turing, Ampere) efficiently process 
INT8 operations. This efficiency is particularly important for CPU inference, where quantization reduces memory bandwidth 
bottlenecks, and for mobile AI accelerators optimized for INT8. 

In summary, 8-bit quantization delivers 4× smaller models and typically 2–4× inference throughput improvements with 
minimal accuracy impact (~1%) [9], making it a standard technique for deploying transformer models in production. 

B. Beyond 8-bit: 4-bit Quantization and Mixed Precision 
4-bit quantization offers even greater compression than 8-bit, creating models half the size of 8-bit versions and 8× 

smaller than FP32 models. This extreme reduction presents significant challenges due to very low precision, potentially causing 
larger accuracy drops if not done properly.. Research from 2023 (Dettmers et al., 2023) introduced QLoRA, which combines a 

novel 4-bit quantization format (NF4) that preserves outlier precision with LoRA fine-tuning techniques. QLoRA demonstrated 
that even massive language models with tens of billions of parameters can be effectively fine-tuned in 4-bit without significant 
performance degradation. For smaller classification models, 4-bit quantization could compress to approximately 1/8th of the 
original size. 

For classification tasks, if extreme compression is needed, one could explore 4-bit weight quantization. There will be some 
accuracy loss, but techniques like quantization-aware training, mixed precision (keeping some sensitive layers at higher 
precision) [8], or distillation can help. It's worth noting that even float16 (half-precision) offers a 2× reduction in memory and is 
widely used during speed training. Many deployment scenarios now use mixed precision or bfloat16. However, for most cases, 
int8 is a sweet spot providing an excellent balance of efficiency and accuracy retention, which is why we focus on it in our 
experiments. 

V. EXPERIMENTS: BENCHMARKING EFFICIENT METHODS ON CLASSIFICATION TASKS 
To concretely demonstrate the effects of these techniques, we run a set of experiments on a text classification task. We use the 
Stanford Sentiment Treebank (SST-2) binary sentiment classification as a representative task (with train/dev/test splits). Our 
baseline model is a 12-layer BERT-base (uncased) fine-tuned on SST-2. We compare the following model variants: 

 Full Fine-Tuning (Baseline): BERT-base fine-tuned on SST-2 (110M parameters, FP32 weights). 
 Adapter Tuning: BERT-base with Houlsby-style adapters (with a bottleneck size of 64) inserted in each layer, fine-tuned 

on SST-2 by training only the adapters. 
 LoRA Tuning: BERT-base with LoRA applied to query & value projection matrices in attention (rank r=8), fine-tuned by 

training only the LoRA parameters. 
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 Layer-Pruned Model: DistilBERT (6-layer model distilled from BERT) fine-tuned on SST-2. 
 8-bit quantized Model: BERT-base quantized to int8 for training and inference. 

We evaluate each model on the SST-2 development set for metrics and measure inference performance on an NVIDIA T4 
GPU.. The metrics recorded are: Throughput (samples processed per second at batch size 32), Memory Usage (estimated peak 
RAM/VRAM during inference for the model), and classification performance metrics ROC AUC, PR AUC (area under precision-
recall curve). 

Table 1: Performance and Efficiency Metrics Across BERT-based Adaptation Strategies 

Model Type 
Params 

(M) 
Size 

(MB) 
ROC 
AUC 

PR 
AUC 

Training 
Time (s) 

Throughput 
(samples/sec) 

Memory Usage 
(MB) 

BERT-base Full fine-
tuning (FP32) 

109.48 417.66 0.9736 0.9757 273.0 4693 569.08 

BERT-base+Adapters 
(64d) 

112.49 429.11 0.9554 0.9618 196.21 4673 594.2 

BERT-base LoRA (r=8) 109.78 418.79 0.9653 0.9707 195.4 4112 571.84 

Layer-Pruned 

(DistilBERT 6-layer FT) 
66.96 255.42 0.9636 0.9662 139.4 7799 408.44 

BERT Base (int8 
quantized) 

23.87 91.08 0.9629 0.9664 274.14 44.65 23.78 (CPU) 

Table 1: Parameter-efficient methods (adapters and LoRA) achieve ROC-AUC and PR AUC only 1% point below fine-tuned 
BERT with ~1% to 12% lower inference speeds and slightly higher memory usage (~4%). These methods maintain performance 
while being cheaper to fine-tune. 

 

Figure 2: Comparison of Fine-Tuning Strategies: ROC AUC vs. Training Time 

Figure 2: Performance (ROC AUC) vs. Training time. Distill BERT has the lowest train time given half the number of 
parameters, while the performance drop is only 1%. Lower compared to full fine-tuning. 
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DistilBERT (6 layers) delivers ~80% throughput improvement with 30% smaller memory footprint, consistent with its 
40% parameter reduction [9]. Its ROC-AUC is only about 1% point lower than full BERT, making the under 2% performance 
loss acceptable for many applications, given the nearly 2× speed boost. 

The int8 quantized model retains 98% of full model performance while using only ~23 MB of CPU memory for weights 
(24× reduction). On our CPU setup, inference speed dropped 10×, but machines conducive to int8 quantization (e, AVX512 VNNI) 
can yield significant throughput gains. Overall, quantization provides huge memory savings with negligible (<1% pt..) 

performance loss. 

 

Figure 3: Comparison of Model Size and ROC AUC for Fine-Tuning Methods 

Figure 3: Performance (ROC AUC) vs. Model Size. Quantized (int8) model is approximately 4x the size compared to the 
fully parameterized models.  

These results confirm: parameter-efficient tuning maintains performance while saving training resources; layer 
pruning/distillation doubles speed with small accuracy drops (1-3%); and 8-bit quantization offers major memory improvements 
with minimal performance impact [9]. 

V. CONCLUSION 
Efficient alternatives to full fine-tuning have matured to maintain nearly state-of-the-art NLP performance at a fraction of 

the computational cost. We reviewed parameter-efficient methods (adapters and LoRA) that drastically reduce training overhead 
and storage [1,2], pruning techniques that boost inference speed (DistilBERT achieving 60% faster runtime for just 3% 

performance loss [9]), and quantization approaches that compress models with minimal performance impact [9]. 

For sentiment classification, we found LoRA and adapters matched full fine-tuning performance while reducing trainable 
parameters by orders of magnitude, and int8 quantization preserved performance within ~1% while using × less memory. 
Pruning half the model's layers doubled throughput with only a modest F1-score drop. Combining techniques compounds 
benefits, as seen in QLoRA, which enables 65 B-parameter model fine-tuning on a single GPU through 4-bit quantization plus 
LoRA. 

We recommend starting with less intrusive methods (PEFT and 8-bit quantization) that preserve performance, then 
considering pruning or distillation if further optimization is needed. Efficient fine-tuning improves accessibility and 
sustainability, allowing researchers with limited resources to experiment with powerful models and enabling deployment at scale 
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without prohibitive costs. These techniques are indispensable for optimizing large transformers efficiently without sacrificing 
quality. 
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