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Abstract: PPML is a novel and rising interdisciplinary field that deals with the application of artificial intelligence to 

learn models while preserving data privacy. The pervasive and consequential use of data in diverse fields calls for 

providing security for information, particularly when used for ML purposes. This paper reviews the state of the art in 

PPML and discusses several techniques, including Differential Privacy, Homomorphic Encryption, Secure Multiparty 

Computation, and Federated Learning. We discuss the experiences of the proposed methods in keeping up with high 

innovation while assuming high privacy regulations, computational costs, algorithmic compromises, and 

responsibilities. In this paper, we first present a survey of the current literature to assess the performance of the 

proposed methodologies and to design a novel framework for privacy-preserving machine learning. Our approach 

combines state-of-the-art privacy-enhancing techniques with a modular ML pipeline that is fit for a wide range of 

applications. Experimental outcomes illustrate the accompanying typical means and compromises in privacy 

protection. In conclusion, the paper outlines the directions of further research, focusing on the importance of 

interdisciplinary science in driving efficient progress in PPML. 

Keywords: Privacy-Preserving Machine Learning, Differential Privacy, Homomorphic Encryption, Federated Learning, 

Secure Multiparty Computation, Artificial Intelligence. 

I. INTRODUCTION 

A. Background and Motivation 

 
Figure 1: PPML 

CIOs have made spectacular changes the world over by providing industries with exponential growth of digital data 

through sectors like health, finance, and customised services. In the medical field, technology has created the tools for the 

early diagnosis of diseases, treatment programs, and favourable results. [1-3] Likewise, in the Finance area, intelligent 

models created through Machine learning are redesigning fraud detection, credit risk assessment, customer relationship 

management etc. Services that filter information for a consumer base have improved client satisfaction in purchasing, 

entertainment, and communication. Such changes have opened up unimaginable possibilities for change, advancement of the 

economy, and progression of society. Nevertheless, the tremendous volumes of information produced and analysed introduce 

certain guarded risks. Organisational data mismanagement risks result in more adverse impacts like data breaches, 

unauthorised access, and exploitation of valuable data. As seen in the case of such incidents, it violates people's privacy and 

makes it more difficult to trust computationally based systems, which will be key to adopting new technologies. It becomes 

even more risky when handling such information, including health information, payment information, or other identification 

information. These worries are compounded by the nature of today's basic technological tools known as Machine Learning 

(ML) algorithms. In order to obtain high accuracy and have good performance, an ML model mostly requires large amounts 

of data and detailed data. This reliance on large-scale data brings in large privacy risks. For example, the data collection 

process may introduce susceptibility of the collected data to breaches or unauthorised access, and the model training can 
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introduce private details that attacks can decode. In addition, the Deep ML models during the inference phase and the 

information provided in the output section pose a vulnerability to statistical or adversarial exploitations. Such challenges 

point towards the requirements of privacy-preserving techniques to safeguard the data, build trust and foster stakeholders' 

ethical use and development of Machine Learning and data-centric technologies. 

B. Privacy Concerns in Machine Learning 

There are usually multiple phases in the machine learning pipelines; every connected phase can raise privacy 

concerns. The first step most exposed is data collection because it features various forms of data that can easily be leaked 

through breaches or insecure conduits and repositories. At this stage, it is common to integrate large volumes of personal 

data collected from different sources, thus creating a large attack vector for an adversary. Lack of adequate data protection 

mechanisms at this stage exposes the privacy of individuals, hence a possibility of illegitimate access. Data preprocessing is 

the next level, where the raw data collected are shaped and processed towards a model training form. Carelessness during 

this stage might reveal certain things; for instance, it has been observed that even a seemingly anonymised dataset can be 

de-anonymised using other attributes, thereby increasing vulnerability levels. Just as in model training, several privacy issues 

come with Fl terminals. More sophisticated forms of adversarial attacks, named Model Inversion Attacks, enable the attacker 

to recover training data to develop a certain model. Another novel threat is the membership inference attacks in which the 

adversary can figure out whether a given point belongs to the training set. Such risks emphasise the calling for contacts to be 

private-aware at the training stage. The inference stage is equally important because it entails using developed models to 

come up with predictions of the new data set fed into the model. Here, information leakage of private data is highly likely 

through exposures in model outputs. There is also an external attack where an attacker gains complete information about a 

model using a query-based inference attack; the attacker scans the model and finds sensitive patterns or data points hidden 

in the model. This is especially true when the data generated by the models is human-readable or combinable with other 

sources of data; even what appear to be innocuous outputs can present sensitive information when put through statistical 

analysis or allied with other data sets. These multi-stage vulnerabilities clarify two things: We must incorporate proper 

privacy-preserving techniques in each step of the machine-learning process. Some techniques that can address these 

concerns include differential privacy, secure multiparty computation, and federated learning, but problems with privacy 

utility and scalability in connection with these techniques persist. 

II. LITERATURE SURVEY 

A. Overview of Privacy-Preserving Techniques 

a) Differential Privacy (DP) 

There is another soundwork called Differential Privacy (DP); DP is recognised as a stringent and popular 

mathematical model for individual data protection in the dataset. This is done by adding an amount of noise to the outputs of 

an algorithm so that no individual input data can overwhelmingly swing the results one way or the other. This was brought 

about by the work done by Dwork et al. (2006) [4,5], a revolution in privacy-preserving data analysis. The Laplace 

mechanism, one of the core DP methods, introduces noise proportional to the sensitivity of the particular query while 

maintaining overall tendencies of values. The concept of DP has been generalised with advancing applications such as 

quantum computing and even deeper learning. Abadi et al. (2016) proposed DP-SGD that alters the original implementation 

of the SGD method by adding noise to its gradient update and using clipping to regulate large contributions from individual 

data points. The above technique allows the training of neural networks with maximum data privacy while at the same time 

achieving improved utility. 

b) Homomorphic Encryption (HE) 

Homomorphic Encryption (HE) is a cutting-edge cryptographic approach that allows for computations on encrypted 

data without compromising data security. HE has the advantage of removing the need to decrypt data before performing 

computation, hence minimising contact with successive vulnerability threats. [6,7] Gentry (2009) proposed the first known 

fully homomorphic encryption scheme that is feasible to implement a solution, a landmark in cryptography. This pioneering 

study showed that simple number crunching could be done on encrypted information, and while this possibility was 

attractive, the constraints in computational intensity were significant. Chillotti et al. (2020) further enhanced TFHE (Fast, 

Fully Homomorphic Encryption over the Torus) to enhance efficiency that enables the processing of encrypted data in real 

time. It employs different types of schemes, such as partial, somewhat, and fully homomorphic encryption, that differ with 

respect to computational functionality. Homomorphic encryption breaks the ciphertexts' confidentiality and allows any 

computation, making it the most general but costly type. 

c) Secure Multiparty Computation (SMPC) 

Secure Multiparty Computation, abbreviated as SMPC, is a secured cryptographic process that allows two or more 

parties to perform computation on a joint function of joint inputs, with all the parties preserving the secrecy of their input 
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data. This is possible because this approach guarantees information security at every calculation process step. The idea was 

pioneered by Yao [8,9] (1982) by creating garbled circuits that are typical for secure two-party computations, which form the 

basis of modern SMPC solutions. Mohassel and Zhang took it further with the SecureML framework, which enables such 

learning through SMPC models.SMPC can be defined as protocols through which data are separated, encrypted or obfuscated 

shares that participants share. Each partition carries out some calculations locally, and the outcome is fused at the end. This 

means that nobody has full access to the data or calculations, as in the work of Zhang et al. 

d) Federated Learning (FL) 

FL is a new approach to decentralised machine learning where a number of devices or institutions cooperate to jointly 

train a model while the raw data remains at the sender. This also solves the issues to do with data privacy since such data is 

not transferred out of the source devices. [10,11] McMahan et al. (2017) presented federated averaging to update and enhance 

a global model via synchronised model updates from multiple devices without data transmission. To the best of our 

knowledge, Kairouz et al. (2021) have comprehensively reviewed FL concerning its applications, issues, and prospects.FL 

generally offers its services in cycles or seasons, as it is commonly known. In each round, slim devices first download the 

model to their local storage and then train on the local set before uploading only the gradients or model updates to a master 

server. The server collects some of these updates to enhance the global model suggested across the various centres. There is 

an iterative process concerning the model's parameters analysis until the model reaches convergence. In this kind of model, 

we have outlined various approaches applicable to DPL and the benefits and drawbacks of every approach. Evaluating the 

most suitable approach entails considering the kind of application that needs to be constructed, user anonymity level, 

hardware constraints, and attributes of data inputs. 

B. Challenges in PPML 

a) Computational Overheads 

Encryption and other secure approaches to dealing with data come at a price, which means that certain 

computational overheads are inevitable in machine learning. HE and SMPC are computational methods that involve 

processes that may need extensive multiple computations depending on the type and amount of information being 

processed. For instance, HE includes computation of the arithmetic operations on the encrypted data that is about a 

thousand times slower than the computation on plain text. Like CCP, at the heart of SMPC computation, there is repeated 

communication between parties and multiple computations, which adds latency to the system. This request proves to be 

especially critical in real-time or limited-supply contexts, including edge nodes and mobile computing systems. Measures 

taken to address these overheads include advancing cryptographic algorithms and using additional hardware acceleration, 

such as GPUs or special chips. Nevertheless, augmenting privacy and ensuring performance are optimal and are still the 

main concerns in the current literature. 

b) Algorithmic Complexity 

Privacy parameters in PPML architectures are small – it is a question of achieving the best balance between machines' 

privacy and the reflection's effectiveness. Such complexity stems from the fact that incorporating sophisticated techniques 

such as cryptographic methods or differential privacy requires maintaining them in a machine-learning process without 

much loss of accuracy. For example, noise added to the data to enhance differential privacy works well to preserve data 

privacy. However, the added noise will degrade the model loyalty; similarly, the highly complex mathematical computations 

in HE and SMPC make it difficult to implement a system. To serve privacy-conscious users while not being diminished in 

efficiency or effectiveness, the developers and researchers are to find a suitable trade-off between these two mandatory 

contradictory factors for an algorithm. The challenge is further compounded by the fact that applications are found in many 

disciplines, and each domain has its constraints in terms of privacy and performance. This remains an active area of 

research, demanding moderation and coordination across disciplines and technology, as well as the development of new 

practices, including the ability to incorporate adaptive privacy that adjusts for differential levels of information sensitivity in 

big data and models. 

c) Regulatory Compliance 

Non-compliance with legislation that regulates data protection and privacy, such as the General Data Protection 

Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPAA), remains an essential challenge to 

PPML. They proscribe high standards on data processing, storage and exchange where many giant organisations are forced 

to implement stringent provisions to protect the data. For instance, the GDPR focuses on principles such as the minimisation 

of data retention and consent of the user, while the HIPAA focuses on the act of setting exact standards for the health 

information of a patient. Deploying the PPML systems that meet these regulations implies some legal and ethical issues. 

Organisations need to verify that sophisticated machine learning and data preparation pipelines comply with authorities and 

that compliance may differ between countries to lessen the risks of non-compliance. There is a need to carry out privacy 
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impact assessments, clarify how data is governed, and ensure compliance with the SDLC. Non-compliance with these 

requirements attracts severe penalties, and compliance with regulations is a critical component of PPML development. 

C. Comparative Analysis 

Table 1: Comparative Analysis 

Technique Privacy Guarantee Computational Cost Applicability 

Differential Privacy High Moderate Statistical analytics 

Homomorphic Encryption Very High High Encrypted computation 

SMPC High High Collaborative settings 

Federated Learning Moderate Moderate Decentralised learning 

This section presents the comparative analysis of privacy-preserving techniques, which shows how these methods 

differ in their privacy protection capabilities, the computational complexity of the methods, and details concerning the utility 

of privacy-preserving techniques for certain situations. It is highly privacy-preserving because it makes individual 

contributions indistinguishable and makes tasks such as statistical analysis possible. Its computational complexity is not 

particularly high as the noise calibration and sensitivity analysis do not require high computational resources. This blending 

of the best of two worlds, privacy and utility, makes DP particularly useful in large-scale data sets where statistical 

conclusions are needed while no infringement of subjectivity is allowed. This feature highlights Homomorphic Encryption 

(HE) because this approach provides almost maximum privacy, as computations can be performed on the encrypted data 

without revealing other information. Such a level of security is unparalleled, thus making HE ideal for applications such as 

cloud-based computations and encrypted database queries. However, it is crucial to note that these gains are paid for by a 

high computational expense, which makes HE algorithms computationally extensive because they entail cryptographic 

processes, making the idea less feasible for real-time or bulk use. Secure Multiparty Computation (SMPC) provides strong 

privacy since the parties can accomplish their computation while hiding the inputs from others. It is best used in multiuser 

environments where the data must not be freely shared because of legal restrictions or because the information belongs to a 

particular company or organisation. Nonetheless, SMPC comes with robust privacy guarantees, and its main weaknesses are 

that it takes up a lot of computing and communicating resources, particularly in large numbers of participants or incurring a 

high number of computation operations. Federated Learning (FL) epitomises the more decentralised approach to privacy. FL 

maintains moderate privacy guarantees as it only transmits model updates while keeping the data stored in each device. In 

terms of computation complexity, this is relatively moderate compared to raw data transfer because it only requires the 

aggregation of updates being passed. FL is especially beneficial for learning situations where various devices with different 

specifications or Headquarters-Branch structures and mobile networks are involved in the learning process simultaneously. 

However, it's important not to exchange datasets and personal data that are desirable to remain between them. Such 

findings emphasise that each method has advantages and disadvantages, and their utilisation depends on reference cases, 

privacy, cost, and time considerations. 

III. METHODOLOGY 

A. Modular PPML Framework 

In addressing major privacy concerns in machine learning, the paper presents a construction of a flexible basic 

architecture of the PPML as a sequence of stages containing privacy-preserving methods. [12-15] This framework is made 

with modularity, extensibility, and soundness in mind so that protecting sensitive data does not severely affect the model's 

utility. The nature of such a pipeline is modular, so different techniques can be implemented depending on their use case, 

compliance protocols, or computational resources. The pipeline is divided into three key stages: It mainly captures the data 

preparation, model building, and model assessment processes. Data is protected using different methods, such as 

pseudonymisation and Differential Privacy (DP) during the data preprocessing step. The techniques erase the identity of 

individuals by substituting their names with pseudonyms and retain the analysis's significance. DP is taken one step further 

by adding well-measured noise into the sensitive information so that the analysis or modelling cannot uncover facts about 

the people represented in the set. 

Mechanisms such as HE for the cryptographic level and FL are used in the model training process. HE enables the 

computation of encrypted data, thus protecting data from invasions during processing. On the other hand, FL enables the 

training of a model across multiple decentralised datasets without sharing the raw data with a central server. This 

combination guarantees adequate and strong privacy protection, especially when confronted with sensitive or distributed 

data. Last, the general privacy-utility trade-off analysis is performed in the evaluation model stage. This paper aims to 

quantify the effects of privacy-preserving techniques on the performance of models, enabling privacy, performance, accuracy, 

or any other parameter comparison. All these techniques are easily incorporated in PPML, and by making the PPML into a 
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modular framework that can be easily implemented across a range of ML applications, this paper has provided a scalable 

solution to the problem of privacy violation in machine learning.  

 
Figure 2: Modular PPML Framework 

a) Data Preprocessing:  

Data preprocessing is one of the key initial stages within the Privacy-Preserving Machine Learning (PPML) 

framework, as it provides the first layer of privacy preservation before any ML operations. The first objective of the 

broadcasting stage is the privacy preservation of individuals, although the dataset should still be valuable for additional 

analysis and model training. Two main approaches used in this phase are pseudonymisation and noise injection based on 

differential privacy. Pseudonymisation means replacing information that could directly identify one party, including names, 

addresses, or social security numbers, with 'pseudonyms', unique to the original data subject but not linked to them. For 

example, in the patient record database, name fields could be substituted with random alphanumeric characters. This helps 

to maintain that even if the dataset gets out, the chances of people being recognised are minimised greatly. Although 

pseudonymisation strips off clear identities inherent in the data, thereby minimising the vulnerability of the data to 

breaches, the analytical usefulness of the data for research and modelling is retained. Notably, this process is privacy-

preserving, including privacy laws such as the GDPR, which encourage the preservation of data privacy through processes 

like pseudonymisation. Slightly more sophisticated than random noise infusion, Noise Injection Using DP adds statistical 

noise carefully calculated to selected data points. This noise minimises an attendant risk that arises from any one record 

often being included or excluded from the dataset such that this preserves individual privacy. For instance, when dealing 

with records from a health care institution, DP helps eliminate patient data particulars but allows analysts to draw generality 

from the data, such as disease trends of a certain period. DP is significantly useful for statistical queries because it addresses 

privacy–utility trade-off by controlling noise levels depending on the characteristics of the data and allowed privacy budget. 

Altogether, these preprocessing methods provide a secure platform for developing privacy-preserving machine learning to 

safely and reasonably utilise delicate information in different parts. 

b) Model Training:  

The model training phase is one of the critical steps toward the PPML and involves additional methods of protecting 

data during the training process. This phase thus uses cryptographic techniques and distributed learning techniques to 

reduce privacy risks while enabling model training on an input dataset. The main technologies used in this phase are 

Homomorphic Encryption (HE) and Federated Learning (FL). Homomorphic Encryption (HE) is a revolutionary proclaimed 

cryptographic process espoused to support computations of encrypted data. This guarantees the privacy of such data as 

monetary operations or patients' records during the whole process of calculation. For example, in difficult feature 

computations, HE hides the data and performs feature computations without revealing the values. Not even the model 

trainer can pre-fetch future data, making HE extremely efficient when data privacy is critical. 

As applied from input to output, HE ensures that data is protected from unauthorised access or even data 

leakage/loss while bearing the price of computational complexity. This makes it particularly important in application areas 

such as cloud-based machine learning, where data is fed through possibly malicious environments. FL works with HE to 

tackle privacy issues inherent in decentralised datasets. FL makes it possible to train the models across many devices or 

organisations without sharing the actual raw data with one central point. However, models are trained locally for specific 

datasets, and only partial information, such as a model parameter, is transferred to the central server. This approach, for 

example, ensures that such information as people's health records or customers' health records do not reside on remote 

devices, drastically reducing the chance of leakage. The FL environment is especially suitable for cases where the initial 

datasets are heterogeneous and geographically distributed, such as networks of mobile devices and inter-organisational 

partnerships. When combined, HE and FL allow for building strong protection and efficient model learning for Big Data and 

distributed data with a privacy focus. 

c) Model Evaluation:  

The model evaluation stage is the last but noticeable phase in the PPML process. At this level, measurement is done to 

check the performance of the trained model and the privacy level achieved on the data. Such an evaluation also guarantees 
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that incorporating privacy-preserving techniques reduces the model's capability and ensures it is usable in real-world 

applications. The first and basic task in this stage is the Privacy-Utility Trade-off Analysis, which translates and measures the 

level into which data privacy can be compromised for the best performance of the model. Privacy-Utility Trade-off Analysis 

evaluates the effect of Privacy-Preserving mechanisms that include Differential Privacy (DP), Homomorphic Encryption 

(HE), and Federated Learning (FL) on the overall model performance. Common forecast assessment measures such as 

accuracy, precision, recall, and F1-score are employed for performance. For security, measures such as privacy loss (e.g., the 

privacy budget in DP) show the level of privacy maintained. For example, noise injected into DP mechanisms is inherently 

degrading the model to a certain extent due to the data coarseness that it masks. The reduction in utility achieved through 

this trade-off is precisely quantified and sufficiently minimised to remain acceptable within the framework of the intended 

application. Moreover, evaluation can never occur without scenario-based tests that test how the developed system will 

stand in real-world deployment conditions. For instance, the goodness of fit of the developed model might be evaluated on 

new data unseen to the model, whereas the application of privacy measures such as encryption or decentralised processing 

must not compromise a lot of time or present computational hindrances. This analysis also improves privacy gains, which 

means it is possible to fine-tune privacy-preserving techniques depending on values such as noise levels or encryption types. 

Through the step-by-step examination of privacy and utilisation, the model evaluation stage guarantees that the PPML 

framework meets the twin goals of dataset protection and provides effective and practical analytics. 

B. Workflow Diagram 

a) A flowchart illustrating the PPML pipeline 

The Privacy-Preserving Machine Learning (PPML) pipeline can be visualised as a flowchart comprising five key 

stages: The components are defined as the Input Data, Privacy-Preserving Preprocessing, Privacy-Preserving Training, 

Evaluation and Secure Deployment. [16-18] Every step is important to protect customers' privacy throughout the machine 

learning process and, at the same time, the model's usefulness. 

 
Figure 3: workflow diagram 

b) Input Data:  

The first process in the PPML framework category is data gathering from multiple sources, which leads to a raw 

form. Such sources may include electronic health records that comprise personal details of a patient, transactions that 

involve personal financial records or operation details, and data by IoT devices like smart home equipment and wearables. In 

this stage, the data collected is mostly raw and includes very sensitive and identifiable data; issues related to the collection, 

transmission, and storage of such data are extremely important. This data requires protection from improper persons, 

unauthorised penetration, violation, or improper use or manipulation. To this end, data transmission has to be secured 

against interception or alteration during its transmission, which is done through encryption. Likewise, the data storage 

facilities, which may include encrypted databases and properly configured system access controls, are used to guarantee 

safety even when data is in storage as opposed to transmission. 

Furthermore, data governance policies and regulations of the country, like GDPR of Europe or HIPAA of the USA, are 

very important at this stage. These regulations set out more detailed requirements for managing personal data that contain 

rules on how personal data shall be anonymised, who can access it, and whether personal data can be used without the 

individuals' consent. Further, the ethical issues related to the data collection process are also important. Data subjects have 

certain rights, including the following: data must be obtained for specified purposes, and the data subjects must be informed 

of how the data will be processed. In situations where information is sourced from several countries, cross-border data 
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transfer regulations must also be observed to ensure compliance with the regions' privacy legislation. Since their quality 

affects the further steps of the PPML pipeline and given the fact that they need to be secure and compliant, this stage sets the 

basis for the subsequent processing of the raw data. If these aspects are not handled properly at the input level, then the 

privacy and further integrity of the whole ML process are at risk. 

c) Privacy-Preserving Preprocessing:  

Post-data collection, Privacy-Preserving Preprocessing is an important step since it helps to anonymise the data 

before feeding it into the machine learning pipeline. This stage uses complex methods to mask or obscure basic details that 

are potentially risky for privacy to a large extent. The first major stage in this process is pseudonymisation, where easily 

recognisable data points such as personal names, physical addresses or social security numbers are replaced with unique 

pseudonyms. These pseudonyms retain the internal cohesion of the data, which makes it possible to classify it and search for 

trends and connections, all to ascertain that nobody can be traced. For instance, if there is a patient data set of a hospital, 

patients' name details can be replaced with random numbers or alphabets so that data can be used for research purposes 

without revealing the patient's identity. The second key fragment of this stage is noise injection with the help of Differential 

Privacy (DP). DP adds externally generated random data or perturbs the result of a query to the data. This has the added 

benefit of distinguishing an individual's data from the raw trends in the stimulus set, which is effective, even when the 

attackers have access to auxiliary information. For instance, when DP is used on numerical information such as income or 

age, small variations can be introduced while retaining overall statistical properties. The amount of noise added depends on 

a privacy parameter, privacy budget, which provides the best balance between the utility of the data and the privacy of the 

subject being analysed. When performing the preprocessing stage, it ensures secure authorised protocols and does not 

violate the rules of GDPR or HIPAA. Sometimes, this step is performed by automatic pipelines to maintain reliability, analysis 

efficiency, and uniformity. The following cleaning process eliminates any explicit identification variables or sensitive 

attributes inherent in the raw data, which is suitable for subsequent machine learning utilisation. Factorisation of privacy-

preserving preprocessing proves to be a reliable method of decreasing the amount of privacy risks an organisation is exposed 

to in model training and evaluation. 

d) Privacy-Preserving Training:  

Privacy-Preserving Training is one of the most important steps in PPML, where sanitised data is used to train the 

machine learning models without violating privacy. This stage uses techniques like HE and FL to keep the data safe 

throughout the training process. It does not have any specific step, but it becomes essential in the process, as it allows 

computation on the data that is still encrypted. Cryptographic methods earlier used for computation demanded data 

decryption before actual computation could be done; however, HE maintains that data is always encrypted. For instance, in 

operations that take a financial data set or health data, operations like multiplication of matrices or summarising data are 

done without passing through the raw data, which could have prone it to breaches. This guarantees solid safety, even when 

the computational substrate may not be wholly trustworthy, as might be the case in some distributed settings. Despite 

offering a high level of security, HE demands tremendous computational power because of the mathematical calculation 

incurred in the encryption and decryption process. Federated Learning (FL) enriches HE by solving the privacy problem in 

decentralised data settings. In FL, the model training happens on different devices or on an organisation's server, and each 

participant has a copy of the data. Different from broadcasting raw data, participants transmit deltas of model parameters, 

for example, gradients or weights, to a master server. This breaks away from the need to centralise and, therefore, remove 

the risk of the data being breached or failing to meet data protection laws, including GDPR or HIPAA. FL is especially 

valuable in fields requiring structured data, such as healthcare or finance, since such data is often disaggregated because of 

privacy or other competitive considerations. Using both HE and FL in this stage adequately safeguards patients' privacy 

during computationally costly procedures. These methods protect data from hostile attempts and maintain accurate and 

effective model training by encrypting and decentralising raw data. They constitute the foundation for achieving secure and 

efficient machine-learning solutions during this phase. 

e) Evaluation:  

The Evaluation phase is one of the important steps of PPML, where it is mutually established that the performance of 

the developed machine learning model is satisfactory and complies with the privacy-preserving requirements. This phase 

assesses that the developed model has satisfied the performance and the privacy objectives in harmony, seeking the balance 

of utility and privacy. Accuracy, precision, recall and F1-score are the parameters that mostly reflect the model's performance 

in terms of prediction. These metrics assess the overall efficiency of the model in terms of correctly modelling the given data; 

any such model is primarily intended to be used to predict outcomes in most cases. For example, in the healthcare 

application, a high precision model means fewer false positives, which is necessary for the diagnosis, while high recall means 

fewer false negatives, which is necessary for patient safety. In addition to these basic measurements, precise privacy 

measurements, including privacy loss, ε-differential privacy budget, and information leakage indicators, are established. 
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They express how effectively source code obfuscation, anonymisation, and other data masking tactics conceal sensitive data 

while offering reasonable performance. In evaluation, it is also obvious that there are compromises which privacy-preserving 

methods bring. For example, noise incorporation for differential privacy sometimes degrades the model accuracy but not 

significantly, and Christians cannot accept this level of shrinkage to meet the privacy requirement. A systematic evaluation 

also allows for avoiding the overburdening of the privacy mechanisms at the cost of the model's practical usefulness. In this 

phase, the model is checked for its performance and robustness under threat situations, including membership or model 

inversion attacks. Such testing guarantees that the privacy-preserving techniques are robust against efforts toward leaking 

private data. Finally, the evaluation stage confirms the success of the PPML pipeline and demonstrates that the techniques 

meet performance and privacy requirements. The knowledge earned here helps make decisions on further improvements or 

alterations before actual deployment. 

f) Secure Deployment:  

Finally, the integration of the evaluated model into real applications is done after a process referred to as the Secure 

Deployment phase of the Privacy-Preserving Machine Learning (PPML) process. This stage is important for guaranteeing the 

security of the model and that no data incriminating breach is made during its usage. Deployment requires designing 

foolproof measures to protect the model from possible harm risks while keeping them operational and open to users. 

Encrypted communication channels form one of the key facets of organisational security deployment strategies. When data 

transmission between users and the deployed model occurs, users are assured of the confidentiality of their information 

since the data cannot be easily intercepted. TLS, during the communication with the model, regardless of whether it is 

located in cloud environments, at the edge, or on centralised big servers, guarantees the confidentiality and integrity of the 

data. Another is an access control mechanism for the model or prediction by which only permitted individuals may engage 

the model or view the results. Another measure taken to mitigate such risks is restricting access using RBAC, MFA, and 

secure API gateways. Owing to these activities, oversight of user interaction is facilitated, and auditing is improved as an 

extra measure. Moreover, runtime privacy is also incorporated to ensure that the put-into-practice model constantly shields 

private information during the testing process. For instance, if the model employs Differential Privacy, additional methods 

are provided to introduce noise in the model's real-time prediction, which further less exposure to data leakage. The 

deployed environment of the model is also protected against adversarial threats. This covers placing the system on secure 

web hosting servers suspected of having vulnerability scans and putting into practice measures such as firewalls and 

intrusion detection systems to prevent unauthorised external access. 

C. Algorithms and Techniques 

 Noise Calibration Formula 

ϵ =
∆𝑓

𝑏
 

 

By handling these issues, the secure deployment phase guarantees the model brings accurate and stable predictions 

and preserves privacy requirements in practice scenarios. [19,20] This cautious approach ensures people have confidence in 

the system and conform to the law and ethical standards. 

This formula is basic to Differential Privacy (DP), one of the leading privacy models. Each element in the formula 

plays a critical role: 

 ϵ (Privacy Loss): It expresses the degree of privacy a mechanism offers. A smaller ϵ value means better privacy as the 

added noise is sufficient to prevent adverse effects on output due to specific data values. 

 ∆f (Sensitivity): Sensitivity measures the maximum rate at which the function f changes when one value in the dataset 

is changed. For example, the measure of the sensitivity of a given query might be the maximum impact of an 

individual data point; if the action occurs in a summation query, then the sensitivity is its maximum contribution. 

This means that to achieve privacy, more noise must be introduced when the sensitivity is higher. 

 b (Noise Scale): The noise scale parses how much random noise will be incorporated into the output result. This 

means that when bb increases, it leads to a larger noise that, in turn, gives stronger privacy (lesser ϵ). However, this 

is done with reduced precision in the results being obtained. 

This formula gives privacy (low ϵ) vs utility (low noise) by setting b in relation to ∆f. It is very common for one to 

process statistical characteristics or release summary information, and at the same time, it is necessary to preserve users' 

individual data. 

 Federated Averaging (FedAvg) 

𝝎𝒕 =
𝟏

𝒏
∑ 𝝎𝒏
𝒊=𝟏 t, i 
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Among the Federated Learning (FL) plethora, the Federated Averaging (FedAvg) is the principle model since it trains models 

in decentralised manners without requiring data consolidation. The process works as follows: 

 Local Model Training: Every client (device) then performs local computations on its data stored locally and arrives at 

local model weights ωt, i. Thus, the potential concerning the privacy of the provided information is resolved as such 

data does not go beyond the client's device. 

 Weight Aggregation: Subsequently, clients provide their model weights (not the raw data) to a central server after 

local training. These weights are then summed up by the server using the FedAvg formula, where ω t is the global 

model at time t, and n is the number of clients. It is, in fact, a weighted average of all the local models implemented in 

the organisation. 

 Global Model Update: The accumulator ωt is computed and used to update the central global model, which is then 

shared back to the clients for the next process/round. 

To see why FedAvg achieves both scalability and privacy, let's consider what happens during the updates. It cuts the 

amount of data transferred to a minimal level, passing model updates only. It also keeps sensitive information protected, 

which is suitable for environments such as mobile platforms or organisations with high privacy and security requirements. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

a) Datasets:  

Much effort was put into designing the experiment by considering the accuracy, privacy level and computational cost 

of the proposed PPML. To achieve the maximum diversification of the dataset, two well-known and most common 

benchmark datasets, namely MNIST and CIFAR-10, have become a target of this work. MNIST dataset consists of 70,000 

images on a grey scale for every figure from 0 to 9 with a raw pixel dimension of 28 by 28. Due to its simplicity and 

readability, it is convenient to use it for developing simple yet representative classification models and for assessing the 

fundamental function of privacy-preserving methods. Because of MNIST's structure, it is easy to find the relationship 

between accuracy and privacy by carrying out various experiments with low levels of model complexity. However, due to the 

complex and colourful images involved, the CIFAR-10 dataset is much more difficult to train our model on. This dataset is 

made up of 60000 images spread over 10 classes, including planes, cars, birds and others; each image has a size of 32X32 

and is coloured, having 3RGB channels. Due to several factors mentioned above, CIFAR-10 is challenging and extremely 

suitable for measuring sophisticated machine learning and privacy-preserving algorithms, especially those applied to high 

and diverse dimensions data formats. In fact, by extending the experimental design to CIFAR-10, the setup posed more:") In 

addition to using these two datasets, the design of the experiment included a broad range of tasks that can be characterised 

by simplicity and increased complexity, which allowed us to adequately assess the possibility of the balance between 

accuracy, time complexity, and privacy of the proposed PPML framework. Such a dual-dataset approach allowed us to assess 

the effectiveness of the proposed methods in various conditions corresponding to possible application areas, including 

healthcare, finance, image analysis, etc. 

b) Metrics:  

These three core parameters were used to assess the proposed PPML framework: accuracy, privacy loss, and the time 

required for computation. These metrics were selected deliberately to capture the framework's overall performance in 

achieving the goals defined by the three categories of objectives: privacy, utility, and efficiency. Accuracy was used to show 

the number of data points that were classified correctly and to determine the general predictive power of the model. Higher 

accuracy shows that the model can learn well from these data sources, whether or not privacy-preserving is used. The DPP is 

significant as many methods protecting privacy involve certain transformations or modifications that affect predictive 

performance, e.g., adding noise or encrypting computations. Privacy loss (ϵ) as a core concept of differential privacy was 

employed to measure the level of protection granted to individual data points during model training and inference. H final 

ϵ\eps parameter indicates that increasing the guarantees that the presence or absence of any 1 data point weakens the 

model's output means a lower ϵ\eps value reflects greater privacy. However, getting a very low value of ϵ\epsilon sacrifices 

some precision since there are usually some noise or other tools for privacy-preserving. This trade-off between privacy and 

utility is a general problem in PPML; hence, the privacy loss rate is an important measure for evaluating the framework's 

performance. The amount of time consumed in computations was also measured to determine the feasibility and scalability 

of developing the proposed framework and the impact of computationally expensive privacy-preserving methods such as 

differential privacy, homomorphic encryption, and secure MP computation. These methods often add extra operations, 

including noise calibrating, encryption, and secure transmission, that are typically time-consuming and complicate the model 

training and inference process. Thus, by comparing computational time, the study intended to establish the viability of the 

proposed PPML framework for leading practical applications where concerns with performance and effectiveness are 

paramount. 
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c) Tools:  

To demonstrate the effectiveness of the proposed PPML techniques, two tools, PyTorch and TensorFlow Privacy, were 

used for implementation and assessment. The tools we propose are well-known in the machine-learning community for 

their generality, stability, and power to execute various computations in parallel. PyTorch was used for model definition and 

training because of computational graph flexibility from PyTorch, which enables easy creation and modification of deep 

learning models. The web-based UI and the vast array of pre-defined functions made it particularly effective for trying out 

new privacy methods, and the flexibility of the PPML system meant that researchers could quickly tune the pipeline for 

various experiments. TensorFlow Privacy, a specialised extension of TensorFlow, was integrated to provide the capability to 

utilise various privacy-preserving algorithms. A major feature is the possibility of applying DP-SGD, an optimisation 

technique that provides strong privacy protection during the training phase of the selected model. DP-SGD uses noise 

addition and gradient clipping, which regulate potential contaminations from outliers. Since TensorFlow Privacy is 

implemented on top of TensorFlow, it was easy to integrate such privacy-preserving measures into the very framework of 

machine learning, which means that models could well preserve their privacy while not incurring unnecessarily large 

overhead. Because the chosen experimental setup combined the strong sides of PyTorch and TensorFlow Privacy for PPML, 

the research study provided an opportunity to investigate both the robustness and the ECM sensitivity of the method with 

high practicality. This involved complicating privacy guarantees such as DP-SGD with model performance characteristics like 

accuracy and computation time. These tools also offered the computational infrastructure required to investigate the 

effectiveness of the proposed framework at the scale of the data, in addition to the numerous privacy-preserving settings, 

which are thoroughly discussed in Chapters 6 and 7, as well as considering the practical applicability of the technique when 

privacy, as well as utility, are critical factors. 

B. Results 

Table 2: Trade-offs between accuracy, privacy loss, and computational efficiency in PPML 

Model Privacy Technique Accuracy (%) Privacy Loss (ϵ) Training Time (s) 

Logistic Regression Differential Privacy 88 1.0 120 

Neural Network Federated Learning 92 2.5 150 

Figure 4: Graph of Trade-Offs Between Accuracy, Privacy Loss, and Computational Efficiency in PPML 

The experiments show promising outcomes regarding the effectiveness of various privacy-preserving approaches 

when adopted by different machine learning algorithms. Logistic Regression was applied separately using Differential 

Privacy (DP) as the chosen preserving methodology for the first model. This approach had an accuracy of 88% and proved 

that the model is capable of making useful predictions while at the same time providing robust privacy assurance. The 

privacy loss, measured by ϵ=1.0, means that a strong level of privacy was preserved in the model. However, the 

implementation of noise, a key component of differential privacy, may have introduced a little bit of utility loss, which is well 

observed in the accuracy. A relatively efficient training time was observed for the logistic regression model, with the 

differentiation process taking 120 seconds, thus demonstrating that differential privacy is computationally viable, especially 

for simpler models. 

On the other hand, The Neural Network was trained using Federated Learning (FL) as the privacy-preserving method. 

This model had a testing accuracy of 92%, and the neural network's performance on other more complex data patterns 
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remained high without compromising the data privacy since training was done in parallel and on local networks. However, 

the privacy loss (ϵ=2.5) was slightly higher than the logistic regression model, which can be argued as offering moderate 

privacy protection. The concept of Federated Learning is directed at aggregating updates from multiple devices, not raw data, 

which keeps users' privacy intact. Training for the neural network took 150 seconds, slightly longer than the training time for 

the logistic regression model, predominantly owing to the communication overhead and complexity inherent in the concept 

of federated learning. In conclusion, the proposed schemes are evaluated, emphasising the accuracy aspect, the privacy loss 

level, and computational complexity. We observed that Differential Privacy was helpful for basic models with stringent 

privacy bounds, while Federated Learning outperformed accuracy on complex models with slightly elevated privacy loss and 

computational complexity. 

C. Analysis 

The experiment findings that the paper presents underscore significant advantages and limitations of PPML methods 

concerning accuracy, privacy preservation, and processing time trade-offs. Among all the results, one of the most interesting 

concerns is the relationship between precision and anonymity. From the results as presented, models that incorporated 

privacy solutions such as DP and FL saw a drop in predictive accuracy as privacy was maximised. For example, the Logistic 

Regression model using DP had 88% accuracy and a privacy loss ϵof 1.0, which resulted in a good level of privacy but 

eradicated the possibility of slightly less accurate results. The Neural Network, which was trained with FL, had a slightly 

better accuracy of 92% though a slightly higher privacy loss of ϵ = 2.5, which thus presented moderate privacy. This 

emphasises the fact that it is impossible to achieve both very high privacy and very high model utility at the same time. The 

degree of balance that should be achieved again depends on the application; in some instances, privacy constraints will be 

preferred over raw performance, while in others, the converse will be true. Another important analysis factor is the 

computation latency imposed by privacy-enforcing technologies, specifically, the computation with encrypted or securely 

processed data. Other methods like DP present extra steps to practice that need extra time, such as adding noise and clipping 

its gradient. Likewise, FL also incurs communication overheads attributed to multiple decentralised devices' collection of 

model updates, which amplify the computational load. For instance, the DP-trained model of Logistic Regression took only 

120 seconds, while the Neural Network with FL took 150 seconds due to the more complex decentralised FL training. Online 

learning and real-time analysis are some areas where such computational delays affect scalability. They emphasise the 

necessity of finding ways to make PPML techniques more efficient concerning the overheads and use them in practical 

applications, given the resource limitations of many modern realities. 

V. CONCLUSION 

A. Summary of Findings 

Privacy-Preserving Machine Learning methods represent a landmark development to meet these dual challenges of 

innovation and security. They have all been useful in helping machine learning models utilise secretive data without violating 

an individual's rights to privacy. Starting from Differential Privacy (DP) over to Homomorphic Encryption (HE), Secure 

Multiparty Computation (SMPC), and finally to Federated Learning (FL), each method offers one or more advantages for 

specific applications. DP provides measurable levels of privacy by adding noise to the datasets while preserving the 

usefulness of analysis for other applications. HE allows computations on data in an encrypted form while keeping all the 

computations confidential at the end user's risk of high computation time. Since raw data cannot be exchanged, SMPC makes 

it possible to perform collaborative computations across multiple entities, which is important in strictly regulated industries. 

FL resolves privacy problems in model training, given that participant data remains local in scenarios where data originates 

from different geographical locations. However, it raises difficulties in handling device heterogeneity and communication 

costs. 

However, using PPML techniques has not been without some difficulties, as described below. An eternal problem is a 

compromise between privacy and usefulness – ever more privacy costs, either worse model performance or higher 

computational cost. Furthermore, staying abreast with regulatory requirements regarding frameworks such as GDPR and 

HIPAA reduces the possibilities for a PPML system design and deployment. Classic cryptographic techniques require less 

computational backend than complex methods and algorithms; hence, they affect the scalability of a system, especially for 

real-time systems or systems with limited resources. Still, the studies based on the use of PPML have demonstrated quite a 

high efficiency in addressing privacy concerns while providing valuable outcomes based on analysing sensitive information. 

Incorporating these methods into modular architectures improves their versatility and adaptability to various sectors, 

including health care, finance, and the Internet of Things. With future advances in these research methods, PPML can 

become a great tool for building trustful relationships between people and AI systems and responsibly sharing digital 

transformation results. 
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B. Future Directions 

The challenges and opportunities of PPML as a promising field can be summarised as follows: The present papers and 

approaches to privacy-preserving machine learning should be improved to eliminate the existing flaws and increase the 

sphere of possible applications of PPML. One of them is the development of opportunities to use quantum-safe encryption 

methods. As quantum computers become a reality, some conventional cryptographic algorithms may be threatened, so 

enduring encryption methods immune to quantum attacks must be created. Quantum safe encryption then aligns PPML's 

methodologies for the next generation by proactively addressing a future environment that will be different from the current 

and near future. A second specific and equally important research area is the performance enhancement of the 

computational aspect. A serious disadvantage of most PPML techniques like HE and SMPC is their complexity, which makes 

them impractical and often impossible for realistic real-time applications. If researchers tried to optimise some of these 

processes through algorithms or by accessing dedicated hardware like GPUs or TPUs, PPML techniques could become easier 

and faster. Furthermore, improving the explanatory capability of private models has started to receive attention as one of the 

emerging challenges. Most PPML methods function as obvious models, so there is little information about how privacy is 

preserved or how outcomes are calculated. The enhanced interpretability might lead to more trust and openness, making 

PPML acceptance possible in highly secure fields like medicine, finance, and politics. Using techniques like explainable AI 

(XAI) to help understand models' actions without violating patients' privacy is possible. Last but not least, the 

interdisciplinary study of cryptography, machine learning disciplines, and compliance with the legal aspects required for 

PPML will be the most important step in coping with PPML issues. This comprises developing best practices for data 

protection that are in harmony with the current laws and regulations of the world, such as GDPR and HIPAA. With that, the 

future directions of PPML will improve the technique and cement the platform's role in ethical and safe artificial intelligence 

in the modern world. 
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