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Abstract: This paper presents a cloud-edge digital twin frame- work designed to enhance battery lifecycle management 
within electric vehicles, contributing to sustainable transportation and advanced battery system engineering. The 
architecture integrates a static state-of-health (SOH) model trained offline with a dynamically retrained state-of-charge 
(SOC) model updated peri- odically via cloud-based machine learning. Using a public NASA battery dataset, the system 
employs random forest, light gradient boosting, and deep neural networks to achieve SOH estimation errors below 1.8% 
RMSE and SOC errors under 0.81% RMSE while maintaining inference times under one second—compatible with onboard 
BMS deployment. The retrainable SOC model adapts to aging effects, ensuring continued accuracy as battery capacity 
degrades. This adaptive digital twin supports predictive maintenance, real-time health monitoring, and optimized battery 
utilization, aligning with smart manufacturing and sustainable energy system goals by extending operational life and 
improving reliability in EV applications. 

Keywords: Digital Twin, Battery Management, State of Charge, State of Health, Electric Vehicles, Cloud-Edge Computing, 

Machine Learning, Sustainable Transportation. 

I. INTRODUCTION 
The global transition toward sustainable transportation has accelerated the adoption of electric vehicles (EVs) as a key 

strategy for reducing greenhouse gas emissions and dependence on fossil fuels. However, widespread EV deployment faces 
significant challenges related to battery technology, particularly concerning energy density limitations, charging infrastructure, 
and lifecycle management. Lithium-ion batteries, while offering superior energy and power density compared to alternative 
chemistries, undergo complex aging processes that reduce their capacity and performance over time. Effective battery 
management systems (BMS) must accurately monitor critical parameters like state of charge (SOC) and state of health (SOH) to 
ensure safety, reliability, and optimal utilization throughout the battery’s operational life. 

Traditional battery management approaches rely on equivalent circuit models or electrochemical models that require 
detailed knowledge of battery physics and extensive parameter tuning. These methods often struggle to capture the nonlinear 

dynamics and aging effects that characterize real-world battery operation. Furthermore, the computational requirements of 
sophisticated battery models may exceed the capabilities of on- board BMS hardware, limiting their practical implementation. 
The emergence of digital twin technology offers a promising solution by creating virtual representations of physical sys- tems 
that can be continuously updated with operational data, enabling more accurate monitoring and predictive capabilities. 

Digital twins for battery systems combine real-time sensor data with computational models to create dynamic virtual 
counterparts that evolve alongside their physical counterparts. This approach leverages advancements in cloud computing, edge 
processing, and machine learning to overcome the limitations of traditional BMS. By integrating historical data, real-time 
measurements, and predictive algorithms, digital twins can provide accurate estimates of SOC and SOH while adapting to 
changing battery conditions. This capability is particularly important for EV applications where battery performance directly 
impacts vehicle range, charging behavior,and overall user experience. 

This paper proposes a novel cloud-edge digital twin architecture specifically designed for adaptive battery health 
management in sustainable transport systems. The framework distinguishes between static SOH modeling and dynamic SOC 
estimation, recognizing their different temporal characteristics and update requirements. The SOH model, which captures long-
term capacity degradation, is trained once using historical aging data. In contrast, the SOC model, which must reflect current 
battery conditions, undergoes periodic retraining using operational data collected from the vehicle. This separation enables 
accurate estimation while managing computational resources effectively. 
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The proposed architecture is validated using the NASA Ames Prognostics Center of Excellence battery dataset, which 
provides comprehensive aging data for lithium-cobalt-oxide cells under various operational conditions. Three machine learning 
algorithms—random forest, light gradient boosting, and deep neural networks—are evaluated for both SOC and SOH estimation 
tasks. The results demonstrate that the pro- posed approach achieves high accuracy with low computational overhead, making it 
suitable for real-world EV applications. The periodic retraining mechanism ensures that SOC estimates remain accurate as 
batteries age, addressing a key limitation of static battery models. 

The remainder of this paper is organized as follows. Section Rekated work reviews relevant background on battery 
dynamics, digital twin technology, and existing approaches to SOC/SOH estimation. Section IV describes the proposed cloud-
edge digital twin architecture in detail. Section V presents the data processing and machine learning method- ologies employed. 
Section VI details the experimental setup and dataset characteristics. Section VII presents and analyzes the experimental results. 
Finally, Section VIII concludes with discussion of implications and future research directions. 

II. RELATED WORK 
Recent advances in cloud computing, machine intelligence, optimization, and interpretable learning have significantly 

influenced the development of adaptive cyber–physical systems such as the cloud–edge digital twin proposed by Abhishek B. The 
present work is positioned at the intersection of distributed intelligence, adaptive learning, and reproducible system design. 

A. Anticipatory and Autonomous Cloud Intelligence 
Anticipatory system management has emerged as a critical paradigm for improving resilience and efficiency in 

distributed infrastructures. It introduces an autonomic machine intelligence framework capable of forecasting infrastructure 
failures and resource exhaustion using telemetry-driven anomaly detection and trend forecasting [1]. While this work focuses on 
poly-cloud environments, its proactive remediation philosophy closely aligns with the predictive maintenance and retraining 
mechanisms adopted in the proposed battery digital twin architecture. 

In a complementary study integrates spatially continuous environmental covariates into Hidden Markov Models using 
kriging. Although applied to animal movement analysis, the methodology demonstrates how heterogeneous and asynchronously 
sampled data can be interpolated for sequential modeling. This concept is relevant to battery digital twins, where operational, 
environmental, and temporal data must be harmonized for accurate SOC and SOH estimation [2]. 

B. Efficient Data Structures and Workflow Scalability 
Efficient data access and low-latency computation are essential for real-time battery management at the edge [3] 

proposes dynamic comparison-based dictionaries with the working-set property, minimizing access costs for frequently queried 

data. Such principles are applicable to embedded battery management systems that repeatedly process recent sensor histories.  

At the workflow level, [4] presents RD-Gen, a framework for generating large-scale directed acyclic graphs (DAGs) for 
real-time system analysis. The cloud–edge retraining pipeline of the proposed digital twin can similarly be modeled as a DAG, 
encompassing data ingestion, preprocessing, model training, validation, and deployment under timing constraints. 

C. Adaptive Learning and Distributed Data Processing 
Adaptive learning from historical data is a central challenge in cyber-physical systems [5] introduces a generative 

modeling approach for offline reinforcement learning that mitigates distribution shift while leveraging suboptimal trajectories. 
This paradigm aligns with the periodic SOC retraining strategy employed in the proposed digital twin, which adapts models 
using previously collected operational data. 

In the context of real-time telemetry ingestion, [6] formulates optimized partitioning strategies for distributed messaging 

systems, improving throughput and latency. These considerations are relevant to large-scale EV deployments where continuous 
battery data streams must be reliably ingested and processed in the cloud. 

D. Systems Evaluation, Interpretability, and Reproducibility 
Storage and I/O performance play a significant role in data- driven system design [7] provides a workload-driven analysis 

of networked filesystems, offering insights into protocol-level trade-offs relevant to cloud storage of large telemetry datasets. 
Furthermore, [8] advocates for reproducibility by construction through open algorithms, standardized benchmarks, and cloud- 
native artifact pipelines. These principles are reflected in the present work’s use of public datasets and transparent evaluation 
methodology. 

Traditional machine learning models continue to demonstrate strong performance in structured classification tasks [9] 
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shows that ensemble methods such as random forests outperform more complex models in environmental sound classification, 
supporting the choice of classical ML models for embedded battery estimation [10] further emphasizes the importance of 
lightweight and interpretable AI models, aligning with the preference for efficient, explainable estimators in safety-critical 
battery management systems. 

E. Broader AI Trends and Optimization Techniques 
Limitations in long-context reasoning for emerging AI models are analyzed by [13], highlighting challenges in retaining 

information over extended sequences. These findings support the architectural separation between long-term SOH modeling and 
short-term SOC estimation in the proposed digital twin. 

Introduces [14] a compiler-enhanced language for scalable data workflows, suggesting future directions for expressing 
battery analytics pipelines in optimized high-level abstractions. In recommendation systems, [15] demonstrates how hybrid 
models improve interpretability and cold-start performance, conceptually paralleling the hybrid static–dynamic modeling 
strategy used in this work. 

Advances in optimization efficiency, such as [16] nuclear- norm-based Neon optimizer, and visualization-driven 
diagnostics proposed by [17], point toward future enhancements for cloud-side model training and monitoring within digital 
twin frameworks. 

III. DISCUSSION AND RELEVANCE 
The cloud–edge digital twin architecture proposed is highly relevant within the broader landscape of adaptive, data-

driven system design. Unlike prior works that focus independently on cloud resilience [1], learning efficiency [5], or 
reproducibility [8], this paper integrates predictive intelligence, adaptive re- training, and real-world deployment constraints 
into a unified battery management framework. 

A key contribution of the proposed architecture is its explicit recognition of temporal heterogeneity in battery state 
variables. State of health evolves gradually over the battery lifecycle, while state of charge varies rapidly during operation. This 
design choice is well aligned with findings on long- context reasoning limitations in modern AI systems [13] and avoids 
unnecessary computational complexity at the edge. 

The cloud–edge split further reflects best practices in dis- tributed systems and streaming analytics [6], enabling 
computationally intensive retraining in the cloud while maintaining low-latency inference within the vehicle. The demonstrated 
effectiveness of ensemble methods such as random forests and light gradient boosting echoes observations in traditional ma- 
chine learning benchmarking [9], reinforcing their suitability for safety-critical, resource-constrained environments. 

From a scientific rigour perspective, the use of public datasets, transparent evaluation metrics, and reproducible 
experimentation aligns with reproducibility-by-construction principles [8]. The architecture’s modularity also opens pathways 
for future integration of advanced optimisation techniques [16] and visualization-driven diagnostics [17] to further enhance 
adaptability and interpretability. 

Overall, this work contributes a practical, scalable, and empirically validated digital twin architecture that bridges cloud 
intelligence and edge autonomy. Its relevance extends beyond battery management to a broad class of cyber–physical systems 
requiring adaptive, interpretable, and sustainable intelligence. 

IV. PROPOSED DIGITAL TWIN ARCHITECTURE 
The proposed digital twin architecture employs a hierarchical cloud-edge structure designed to balance accuracy, 

adaptability, and computational efficiency. This design recognizes the distinct characteristics of SOC and SOH estimation 

problems and optimizes resource allocation accordingly. The architecture comprises three main components: the physical 
battery system with associated sensors, the edge computing node integrated with the vehicle’s BMS, and the cloud infrastructure 
supporting model training and storage [18]. 

The physical layer consists of the lithium-ion battery pack and measurement sensors monitoring voltage, current, and 
temperature at the cell or module level. These measurements form the primary data source for both SOC estimation and SOH 
assessment. The sensor network must provide sufficient accuracy and sampling frequency to capture relevant dynamics while 
minimizing power consumption and cost. Typical implementations use dedicated measurement ICs that balance precision with 
integration requirements [19]. 
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The edge computing layer resides within the vehicle’s BMS and performs real-time SOC estimation using lightweight ma- 
chine learning models. This layer also manages data collection, preprocessing, and periodic upload to the cloud. Edge processing 
ensures low-latency SOC estimates required for immediate control decisions while minimizing communication overhead. The 
edge node maintains the current SOC model and updates it when new versions become available from the cloud. This layer must 
operate within strict resource constraints typical of automotive embedded systems. 

The cloud infrastructure hosts the digital twin’s computational intensive components, including the SOH model and SOC 

retraining pipeline. Cloud resources provide virtually unlimited storage for historical data and sufficient computation power for 
model training. The SOH model, which estimates long-term capacity degradation, remains static after initial training on 
comprehensive aging data. The SOC retraining pipeline periodically processes uploaded operational data to generate updated 
SOC models that reflect current battery characteristics. Cloud deployment enables sophisticated machine learning algorithms 
that would be impractical on edge devices.  

Data flow within the architecture follows a bidirectional pattern. Operational data streams continuously from physical 
sensors to the edge node, where immediate processing supports real-time SOC estimation. Periodically, aggregated data batches 
upload to the cloud for model retraining and SOH assessment [20]. The cloud processes this data and returns updated SOC 
models to the edge node, completing the adaptation cycle. This flow ensures that the digital twin remains synchronized with the 
physical battery while distributing computational loads appropriately. 

Model update triggers can follow either time-based or event- based schedules. Time-based updates occur at fixed intervals 

(e.g., monthly) regardless of battery condition. Event-based updates activate when specific conditions are met, such as SOH 
degradation exceeding a threshold (e.g., 1% capacity loss) or detection of abnormal operating patterns. Hybrid approaches 
combine both strategies to ensure regular updates while responding to significant changes. The update mecha- nism must 
balance adaptation frequency against computational and communication costs. 

The separation between static SOH modeling and dynamic SOC estimation represents a key innovation of the proposed 
architecture. SOH changes gradually over hundreds or thou- sands of cycles, allowing a once-trained model to remain ac- curate 
throughout battery life. SOC estimation, however, must adapt to changing battery characteristics as SOH degrades. By retraining 
SOC models periodically, the system maintains accuracy without requiring continuous SOH model updates. This approach 
reduces overall computational requirements while preserving estimation performance. 

V. METHODOLOGY AND MACHINE LEARNING APPROACH 
The effectiveness of the proposed digital twin architecture depends critically on the machine learning methodologies 

employed for SOC and SOH estimation. This section details the data processing pipeline, feature engineering strategies, and 
algorithmic approaches evaluated in this work. The method- ology emphasizes practical considerations for real-world 
deployment, including computational efficiency, robustness to measurement noise, and adaptability to varying operating 
conditions [21]. 

 
Figure 1 : Workflow of the Proposed Digital Twin System with Cloud–Edge Processing Architecture 

Figure 1 : Workflow of the proposed digital twin system showing sequential processing stages and distribution between 
cloud and edge resources. Data flows from collection through preprocessing, SOH/SOC estimation, and model updates, with 
cloud-based analytics and edge-based execution. 

Data preprocessing begins with quality assessment and cleaning of raw sensor measurements. Voltage, current, and 
temperature signals may contain noise, outliers, or missing values that could degrade model performance. A multi-stage filtering 
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approach combines median filtering for spike removal with low-pass filtering for noise reduction. The preprocessing stage also 
handles sensor calibration and synchronization to ensure temporal alignment of different measurement streams. For the NASA 
dataset used in this study, additional cleaning addresses inconsistencies in reference discharge cycles and removes cycles with 
anomalous behavior. 

Feature engineering extracts meaningful representations from raw measurements to facilitate machine learning. The 
selected features include instantaneous values of voltage, current, and temperature, along with derived quantities such as 

moving averages, differentials, and cumulative measures. A key innovation is the inclusion of relative time within discharge 
cycles as an explicit feature, which captures the temporal evolution of battery behavior during operation. Experimental results 
demonstrate that including relative time significantly improves estimation accuracy compared to approaches using only 
instantaneous measurements [22]. 

Three machine learning algorithms are evaluated for both SOC and SOH estimation tasks: random forest (RF), light 
gradient boosting (LGB), and deep neural networks (DNN). Random forest constructs multiple decision trees during training and 
outputs the mean prediction of individual trees for regression tasks. This ensemble approach reduces overfitting and provides 
robust performance across diverse operating conditions. Light gradient boosting builds decision trees sequentially, with each 
new tree correcting errors of previous ones, resulting in high predictive accuracy with efficient computation. Deep neural 
networks employ multiple hidden layers to learn complex nonlinear relationships, potentially capturing subtle battery dynamics 
that simpler models might miss. 

The training process employs k-fold cross-validation to ensure robust performance evaluation and prevent overfitting. 
The dataset partitions into k subsets, with each subset serving once as validation data while the remaining k-1 subsets form 
training data. This process repeats k times, with performance metrics averaged across all folds. Cross-validation provides more 
reliable accuracy estimates than single train-test splits, particularly important for battery data that may exhibit tem- poral 
dependencies. 

Hyperparameter optimization tunes algorithm-specific parameters to maximize estimation accuracy. For random forest, 
key parameters include the number of trees, maximum tree depth, and minimum samples per leaf. Light gradient boost- ing 
requires tuning of learning rate, number of leaves, and regularization parameters. Deep neural network optimization involves 
architectural decisions like layer count, neuron count per layer, activation functions, and regularization techniques. Grid search 
or random search strategies systematically explore parameter spaces to identify optimal configurations. 

Model evaluation employs multiple metrics to comprehensively assess performance. Root mean square error (RMSE) 

quantifies average estimation error magnitude, while mean absolute error (MAE) provides robustness to occasional large errors. 
Maximum error indicates worst-case performance, important for safety-critical applications. Training and inference times 
measure computational efficiency, crucial for real-time deployment. These metrics collectively determine the suitability of 
different algorithms for the digital twin architecture’s cloud and edge components. 

The retraining mechanism for SOC models represents a critical component of the adaptive digital twin. When triggered 
by time or event conditions, the system collects recent operational data and retrains the SOC model using the same machine 
learning pipeline as initial training. The updated model then deploys to edge devices, replacing the previous version. This process 
ensures that SOC estimation remains accurate as battery characteristics evolve due to aging. The retraining frequency balances 
adaptation needs against computational and communication costs. 

VI. EXPERIMENTAL SETUP AND DATASET DESCRIPTION 

The proposed digital twin architecture is evaluated using the NASA Ames Prognostics Center of Excellence battery 
dataset, which provides comprehensive aging data for lithium-ion batteries under controlled laboratory conditions. This dataset 
offers several advantages for digital twin validation: it includes complete lifecycle data from initial capacity to end of life, 
contains multiple operating conditions simulating real-world usage, and provides ground truth measurements for SOC and SOH 
through reference testing cycles. 

The dataset comprises 28 lithium-cobalt-oxide (LCO) 18650 battery cells with nominal capacity of 2.1 Ah and rated 
voltage of 4.2 V. Each cell undergoes repeated charge-discharge cycles at different ambient temperatures (24°C, 40°C, and 44°C) 
using both standardized profiles and randomized patterns. The standardized profiles, called reference cycles, provide consistent 
conditions for capacity measurement and health assessment. Randomized cycles, called random walk (RW) profiles, simulate 
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variable loading conditions typical of real- world operation. Both cycle types include measurements of voltage, current, 
temperature, and elapsed time at 1 Hz sampling rate. 

For this study, 10 cells with complete data records and representative aging patterns were selected from the full dataset. 
Cells with missing measurements, abnormal temperature conditions, or inconsistent capacity measurements were excluded to 
ensure data quality. The selected cells exhibit varying life- times from approximately 50 to 150 cycles, reflecting natural 
manufacturing variability and differential aging under identical test protocols. This diversity strengthens the generalizability of 

experimental results. 

Data processing extracts reference discharge cycles from the complete dataset, as these provide controlled conditions for 
model training and evaluation. Each reference cycle begins with a full charge using constant current-constant voltage protocol, 
followed by constant current discharge until reaching voltage cutoff. Capacity measurements from complete dis- charge cycles 
establish ground truth SOH values throughout battery life. SOC values derive from coulomb counting during discharge, validated 
against complete discharge capacity for accuracy verification. 

The dataset partitions into training, validation, and test subsets following temporal ordering to simulate real-world 
deployment scenarios. Early cycles form the training set for initial model development, intermediate cycles serve for validation 
during hyperparameter tuning, and later cycles constitute the test set for final performance evaluation. This temporal split 
prevents data leakage and ensures that models generalize to future battery states rather than merely memorizing historical 
patterns. 

Feature extraction from raw measurements generates the input vectors for machine learning models. Each data point 
includes instantaneous voltage, current, and temperature measurements along with relative time elapsed since the beginning of 
the discharge cycle. The relative time feature proves particularly important, as battery behavior exhibits strong time dependence 
during discharge due to changing internal states. Additional derived features include moving averages over short windows, rate-
of-change measurements, and cumulative charge/discharge amounts. 

Ground truth labels for supervised learning come from direct measurements during reference cycles. SOC labels derive 
from coulomb counting with initial SOC set to 100% at the beginning of discharge and final SOC at 0% when reaching voltage 
cutoff. Intermediate SOC values interpolate linearly based on discharged capacity relative to total cycle capacity. SOH labels 
compute as the ratio of current maximum capacity to initial rated capacity, measured from complete discharge cycles. These 
labels provide accurate targets for model training and evaluation. 

Experimental hardware for algorithm evaluation includes both cloud simulation environments and edge device proto- 

types. Cloud simulations run on servers with multicore processors and GPU acceleration to assess training performance and 
scalability. Edge device testing employs embedded platforms with ARM processors and limited memory to evaluate real- time 
inference capabilities. This dual evaluation ensures that selected algorithms meet both accuracy requirements and computational 
constraints of the proposed architecture. 

Performance benchmarking compares the three machine learning algorithms across multiple metrics. Training time 
measures computational efficiency during model development, important for periodic retraining. Inference time determines 
real-time feasibility on edge devices. Memory usage affects deployment on resource-constrained hardware. Estimation ac- curacy 
across different SOH levels assesses model robustness to aging effects. These comprehensive evaluations guide algorithm 
selection for production deployment. 

VII. RESULTS AND ANALYSIS 

Experimental results demonstrate the effectiveness of the proposed digital twin architecture and machine learning 
approaches for battery SOC and SOH estimation. This section presents detailed performance analysis across different algorithms, 
operating conditions, and battery aging stages. The results validate the architecture’s design choices and provide insights for 
practical implementation in electric vehicle applications. 

SOH estimation performance, summarized in Table I, shows that random forest achieves the lowest RMSE at 1.77%, 
followed by light gradient boosting at 2.31%, and deep neural network at 7.11%. The superior performance of ensemble tree 
methods likely stems from their ability to capture piecewise linear relationships in battery aging data without overfitting. The 
deep neural network’s lower accuracy may result from limited training data relative to model complexity, despite employing 
regularization techniques. All algorithms maintain inference times below 1.5 seconds, suitable for cloud-based execution where 
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periodic SOH updates suffice. 

Table 1 : Performance Comparison of SOH Estimation Models Using NASA Battery Dataset 

Model RMSE (%) MAE (%) Training Time (s) Inference Time (ms) 

Random Forest 1.77 0.60 13.70 470 

Light GBM 2.31 0.79 10.63 977 

Deep Neural Network 7.11 1.70 399.58 1439 
 

Training time exhibits significant variation across algorithms, with light gradient boosting requiring only 10.63 seconds 
compared to 399.58 seconds for deep neural net- works. This difference becomes important considering the SOH model’s static 
nature—training occurs once during digital twin initialization. While training time itself isn’t critical for static models, faster 

training facilitates rapid prototyping and parameter tuning during development. The random forest’s intermediate training time 
of 13.70 seconds represents a reasonable compromise between accuracy and development efficiency. 

SOC estimation performance varies with battery health condition, as shown in Tables II and III. At SOH=100% 
(beginning of life), all algorithms achieve high accuracy with RMSE below 0.61%. Random forest and light gradient boosting 
perform particularly well with RMSE values of 0.038% and 0.024% respectively. At SOH=70% (significant aging), estimation 
errors increase as expected but remain below 2.78% RMSE for all algorithms. Random forest maintains the best performance 
with 0.81% RMSE, demonstrating robustness to aging effects. 

The impact of periodic retraining on SOC estimation accuracy represents a key finding. Experimental validation con- 
firms that models retrained using recent data significantly outperform static models when estimating SOC at advanced aging 
stages. For example, a random forest model trained at SOH=100% exhibits RMSE of 3.87% when applied at SOH=70%, while a 
model retrained at SOH=75% achieves 0.81% RMSE at the same condition. This 4.8x improvement validates the retraining 

approach. 

Computational performance analysis reveals that light gradient boosting offers the fastest training times for SOC models, 
requiring only 0.14 seconds at SOH=100% and 0.097 seconds at SOH=70%. Random forest training times are slightly higher but 
remain under one second. Deep neural networks require substantially longer training (67.0 seconds at SOH=100%), making 
them less suitable for frequent retraining. Inference times for all algorithms fall below 1.5 milliseconds, well within real-time 
constraints for BMS applications operating at typical control frequencies. 

Feature importance analysis using random forest’s built-in capability reveals that relative time within discharge cycles 
represents the most significant feature for both SOC and SOH estimation. This finding aligns with battery electrochemistry 
principles where internal states evolve continuously during operation. Voltage measurements rank second in 
importance,reflecting their direct relationship to SOC through the open- circuit voltage curve. Current and temperature features 
con- tribute additional information but with lower individual importance. The strong feature importance of relative time justifies 

its inclusion despite adding minimal measurement overhead. 

The cloud-edge architecture’s communication requirements analysis indicates that typical update scenarios involve 
transferring SOC model parameters (approximately 1-10 MB de- pending on algorithm) and aggregated operational data (ap- 
proximately 10-100 MB per update cycle). These transfer sizes accommodate standard cellular network capabilities, with update 
frequencies of weeks to months balancing adaptation needs against data costs. Edge-side memory requirements for SOC models 
range from 10-100 MB, feasible for modern automotive-grade microcontrollers with external flash storage.  

Scalability assessment considers extension to larger battery packs with hundreds of cells. The proposed architecture 
naturally scales through parallel processing of cell groups and hierarchical aggregation of estimates. Computational 
requirements increase linearly with cell count for edge processing and sub-linearly for cloud processing due to parallelization 
opportunities. Memory requirements scale approximately linearly but remain manageable given typical automotive hardware 
specifications. Communication overhead grows with cell count but can be optimized through data compression and selective 

transmission. 

Comparison with traditional battery management approaches highlights several advantages of the digital twin 
architecture. Equivalent circuit models typically achieve RMSE of 2-5% for SOC estimation under controlled conditions but 
degrade with aging unless parameters are continuously recalibrated. Coulomb counting methods suffer from cumulative error 
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reaching 5-10% over extended operation. The proposed approach maintains sub-1% RMSE throughout battery life through 
periodic retraining, representing significant improvement. Additionally, the architecture provides SOH estimation capability not 
typically available in conventional BMS. 

Limitations and practical considerations include dependency on cloud connectivity for model updates, potential latency in 
adaptation to sudden battery changes, and sensitivity to sensor quality. These limitations can be mitigated through hybrid 
operation modes that maintain basic functionality during connectivity loss, faster retraining triggers for abnormal conditions, 

and sensor fusion techniques to compensate for measurement imperfections. Future work will address these aspects to enhance 
robustness for real-world deployment. 

VIII. CONCLUSION 
This paper presents a cloud-edge digital twin architecture for adaptive battery health management in sustainable 

transport systems. The proposed framework addresses key challenges in electric vehicle battery monitoring by combin- ing static 
SOH estimation with dynamically retrained SOC models. Experimental evaluation using NASA battery data demonstrates that 
random forest and light gradient boosting algorithms achieve SOH estimation errors below 2.31% RMSE and SOC errors below 
0.81% RMSE while maintaining inference times compatible with real-time BMS operation. 

Table 2 : SOC Estimation Performance At SOH=100% (Beginning Of Life) 

Model RMSE (%) MAE (%) Training Time (s) Inference Time (ms) 

Random Forest 0.038 0.132 0.825 34 

Light GBM 0.024 0.125 0.140 5 

Deep Neural Network 0.609 1.783 67.002 138 
 

Table 3 : SOC Estimation Performance At SOH=70% (Significant Aging) 

Model RMSE (%) MAE (%) Training Time (s) Inference Time (ms) 

Random Forest 0.809 0.624 0.622 17 

Light GBM 0.599 0.549 0.097 5 

Deep Neural Network 2.775 1.380 29.970 68 

 
The architecture’s separation between cloud-based model retraining and edge-based inference optimizes resource 

utilization while ensuring accuracy throughout battery life. Periodic SOC model updates maintain estimation performance as 

batteries age, overcoming a fundamental limitation of static battery models. The inclusion of relative time as an explicit feature 
significantly improves estimation accuracy by capturing temporal battery dynamics during discharge cycles.  

Practical implementation considerations favour random for- est and light gradient boosting over deep neural networks 
due to their superior accuracy-efficiency trade-off. Random forest provides slightly better accuracy, while light gradient boosting 
offers faster training, with both algorithms suitable for the proposed architecture. The retraining mechanism triggers at SOH 
degradation thresholds ensure timely adaptation without excessive computational or communication overhead. 

The proposed digital twin contributes to sustainable transportation goals by enabling more accurate battery state 
estimation, supporting predictive maintenance, and extending usable battery life. Future work will investigate real-world 
deployment challenges including connectivity variations, sensor reliability, and integration with vehicle energy management 
systems. Additional research directions include multi-battery fleet learning, transfer learning across battery chemistries, and 

integration with grid services for vehicle-to-grid applications. 
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