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Abstract: By leveraging big datasets and neural architectures, foundation models have taken AI to new heights, 
allowing robust generalization and in-context learning. Going even further multi-modal foundation models (MMFMs) 
also integrate text through images and all sensory information such as audio, video. This paper offers a novel, more 

complete understanding of the MMFM and its principles of design as well as training methodology and architectural 
advancement. Neural_MMoDs is based of several notable models that includes GPT-4, Gemini relational reasoning, 
Flamingo multimodal task completion and Kosmos planner-executor. This in turn demonstrates the efficacy of joint 
multimodal learning across different tasks (recursive reasoning, structured prediction), datasets (VQA [2], COCO- 
captions [26, 27]), and modalities. 

Keywords: Pre-Train Model,Multimodal Learning,Model-Agnostic Tools,Vision-Language Applications,AI Applications  
Generative (Source). 

I. INTRODUCTION 
Due to substantial development resources and increased attention toward creating AI foundation models (which are 

highly accurate, massively pretrained neural networks capable of solving hundreds or thousands of different tasks with 
minimal task-specific tuning), the ML landscape has evolved significantly in the past 5 years. These models have been 

designed with the idea that you will be able to learn from big and diverse corpuses, so they would even perform good on all 
other down stream tasks few shots or zero shot. Even compared with human performance on tasks of understanding (NLU) 
e.g., BERT, and generation of language (NLG) or vision-language retrieval, state-of-the-art models such as GPT-3 and CLIP 
beat even strong human baselines. The problem is that these models are unimodal and only apply to one type of data eg text 
or vision. 

However, the real world is by nature multimodal. Humans simultaneously perceive language, vision, hearing and 
even motor actions within the world as they co-mingle in their interaction with environment. It seems inascribably 
impossible for machines to be able to recreate their rich, contextual understanding of these words unless a new breed of AI 
systems are constructed: multi-modal foundation models (MMFMs). These models are designed to process and understand 
different data of text, image, audio & video formats altogether which is called multi-modality. This is not just the sum or 
concatenation of various inputs this also does a cross model reasoning where the information from one modality helps in 

another. 

GPT-4, Gemini, Flamingo and Kosmos sort of research works are few steps in a direction to this vision. You can do 
visual question answering, image captioning, text to image synthesis, document parsing, speech understanding and even 
robotic action planning from the same architecture. It is this ability to model across modalities that allow these systems to 
build up emergent capabilities from understanding context in an image, but outputting text or listening and learning from 
voice samples while taking into account visual cues. 

This paper gives a more elaborate analysis on MMFs in terms of the basics and architectural advancements, learning 
strategies and applications. Prior to introducing MMFMs in more detail, we start by showing a conventional approach of 
unimodal to multi-modal learning, and then discuss computational principles and learning objectives underlying MMFMs. 
Most of these frameworks contain modality-specific encoders, shared representation spaces and attention-based fusion that 
facilitates cross-modal interaction. 

However, the scaling ability to pretrain over multimodal manifolds is the primary factor for MMFMs success. Just like 
language model pre-training at-scale capitalizes on copious textual corpora, the training of large MMFMs necessitates 
abundant multi-modal data sets — commonly image-caption pairs, video transcripts, audio narrations and instructional 
demonstrations. These self-supervised methods, e.g. contrastive learning [1], masked token modeling [24] and instruction 
tuning [67], allow us to align two modalities into the same semantic space such that they can share information through 
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transfer learning. For example, in models like CLIP, we learn visual-semantic alignments by shrinking the gap on similarity 
scores for positive text-image pairs and widening it for negative.) 

The coverage in this paper is less about the technical mechanizms and more on practical use cases that could be 
applicable using multi-modal understanding. In healthcare, for example, modality-tier models can enable MMFMs to have 
medical images and patient notes available together while making a diagnosis. The Translate Dot pair can also be used in the 
education sector to create smart tutoring systems that answer visual and voice queries. Examples could be to write scene 

descriptions for screen-reading or from speech into contextually descriptive images. In robotics, we use them to turn 
perceptual choices into motions during execution for natural language-directed manipulation. 

Yet MMFMs may introduce new medical and ethical dilemmas. Combining those modalities may only deepen the 
underlying biases or produce reasonable-but-untrue outputs which can trick the user. In addition to the high computational 
costs and scale of data tarnishing its environmental image, critics worry that it would open up extremely invasive 
opportunities for controlling data. In addition, the evaluation of multimodal systems is a hard task as there are no standard 
benchmarks nor evaluations which describe the complexity of natural examples. 

This paper examines the capability and limit of WFM after these previous studies. We investigate why they are 
designed for a common purpose, describe some of the challenges and problems in training and deployment, and outline 
some future research trends in this emerging scientic field. MMFMs are an intermediate step towards realizing generalist AI 
systems that see, reason and interact like humans on multiple modalities, contexts and domains. 

 

Figure 1 : Multi-Modal Vision-Language Model Architectures 

II.BACKGROUND AND RELATED WORK 
Generally, these models such as foundation modelshave established the value of pretrained large neural networks on 

wide and deep data making them the epitomes of modern AI. These models are designed to scale gracefully in both data and 
computation, they exhibit behaviours such as context learning, few-shot generalisation, and robust transfer to new tasks. 

Like a BERT — a bidirectional transformer architecture pre-trained on masked language modeling, GPT-3 (a 175-billion 
model) — autoregressive and can be fine-tuned downstream for literally any natural language task in the world without any 
priming. These models performed well in unimodal domains and this paradigm was later extended to other, multi-modal 
domains. MultiModal Learning — Multi-modal learning aims to develop methods that can understand, map, and generate 
information across different modalities like text, vision, audio or video. These include models like CLIP (cross-modal learning 
in images and texts with contrastive polarity method) and DALL·E (a transformer-based image-generation model that can 
generate photo-realistic results based on textual prompts). In recent advancements and with stronger models like Flamingo 
from DeepMind, we have seen the blending of Large language Models with Vision encoders for performing few shots on 
Image-Language tasks. These models reflect the evolution from modality-specific information processing in isolation to a 
shared representation of multimodal concepts, and have been used in several interesting activities such as Image Captioning, 
Question Answering over images or even general purpose reasoning on visual inputs. Combining cross-modalities into to a 

single architecture is in effect a new paradigm, comes with additional challenges of data alignment, fusion strategies and 
interpretability but allows for previously unavailable applications. This backsogi round supports grounding in the types of 
foundation model (mmwm), while also retains compatibility and scalability with the existing ai methodologies. 
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III. ARCHITECTURE OF MULTI-MODAL FOUNDATION MODELS 
Similar to how Multimodal Foundation Model (MMFM) architectures address multimodal models, here is a versatile 

approach NMMFMs addressing text, image and audio/video prompts. Input Encoders: These modalities are represented 
through the use of input encoders which learn from inputs (either visual or text) to obtain representations/features for each 
modality independently. For example, processing image inputs is commonly done using convolutional neural networks 
(CNNs) or vision transformers (ViTs), while transformer-based encoders, such as BERT or Wav2Vec are helpful for text and 

audio inputs respectively. Once the raw data is converted to its corresponding modality specific embeddings, fusion 
mechanisms are used to combine these representations into a common joint representation. It captures the philosophy 
behind how you can combine information through all different stages — early, mid and late, however what is practised at 
large scale is either processing data from multiple streams ata(single orupt oone-time) point2 ora periodic aggregated 
information between streams1 in some way for example, concatenation cross attention, within network representation3 
building blocks such as costion layers. These operations allow the model to associate and reason across modalities and 
establish relationships among visual components, audio hints. 

The eventual joint representation is a common embedding space in which multimodal many-to-many inputs are 
represented and co-evolve. It enjoys a cross-modal retrieval, generation, and reasoning over views by providing an 
intermediate space for all these operations in the same embedding space. Then, this internal representation decoded into 
different forms — from image captions over visual question answering (VQA), up to speech synthesis or structured text with 

the help of task-specific output heads. To enforce the learning robustness across modalities, we used different pretraining 
strategies to train MMFMs. So for instance, contrastive learning aligns modalities — it brings similar image-text pair together 
or audio-text pairs in the embedding space while it pushes away those which are none match- a very non exclusive method 
used in CLIP. Masked modeling: Another common path for models is learn to predict missing elements from an input (one 
thing like image patches or text token) à la BERT. For example, the next-token prediction (used by Flamingo and Gemini; see 
below), extends autoregressive training to multi-modal token sequences, which can be fed by the model to predict what 
token will appear after a given one in text or an image-text stream. 

The architecture is divided into three main types of MMFM. Two-tower models use separate encoders for every 
modality and its contrastive objectives to learn the alignment. Single-tower models, such as the Perceiver, have a single 
transformer stack shared across all modalities for tight integration at the expense of higher compute. There was a clear ask 
around attention over tokens from within a modality and Multi-Header Transformers took this into account by different 

heads looking at non-overlapping vocab subspaces in their own way — a very modular, but balanced fused information 
injection. Due to these flexible designs MMFMs can be specialized for a wide range of tasks and data types. 

 
Figure 2 : Multimodal Architecture Video Example 

IV. REPRESENTATIVE MODELS 
Gemini (Google DeepMind) is one of these impressive multi-modal base models. Unlike GPT-4, which is restricted to 

text, Gemini can handle not just text data but also video and audio. This allows it to perform better than GPT-4 on a wide 
range of multi-modal benchmarks: by effectively integrating temporal and sensory modalities. Not only could that be a 
stepping stone to greater multimodal AI, because Gemini is really good at stuff like low-latency video comprehension and 

audio-video sync and instruction video analysis etc., but it's also just practical for some tasks where memory causes 
problems otherwise 
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DeepMind also introduces the Flamingo model when investigating meta-learning capabilities in vision-language tasks. 
Flamingo Architecture has frozen large language model, and it is finetuned with Vision Encoders An important innovation is 
our use of cross-attention layers to more effectively combine image and textual streams in deep contextually-targeted 
encoders, enabling seamless transitions from both image understanding to language generation. With fewer task specific 
examples,Flamingo is competitive across different tasks from image captioning and visual question answering to the 
generation of narratives from image sequences. 

The researchers will detail the work at the upcoming CVPR conference and already has a project ready to continue in 
this direction with Microsoft Research's Kosmos-1 multi-modal model, which incorporates vision-language precoduction 
tuning from training data. As shown in experiments, this model can achieve strong performance on multimodal instruction-
following tasks (e.g., OCR, or image captioning with VQA) and generalizes well to held out instructions. It's well-positioned 
— maybe optimally so for human prompts and expectations because of its instruction-tuned nature (easier to fit, easier to 
interface). Kosmos-1 broadens semantics of single-mode, instruction-centric learning-paradigms to multi-modal for 
usability. 

Taken together, these models illustrate that many different architectural frameworks and training objectives have 
converged into the rise of multi-modal AI, each offering advantages for both cross-modal understanding and (+) generation. 

V. APPLICATIONS OF MULTI-MODAL FOUNDATION MODELS 
Multi-modal foundation models (MMFMs) expands that frontier by enabling systems to automatically process 

different types of input modalities — from free-text to image, even audio-visual contents. All these are the sorts of 
applications in which multimodal models enable the next level of use cases, beyond what could be done by unimodal 
systems. 

Table 1 : Multimodal AI Applications by Domain 

Domain Application Functionality Modalities Involved 

Healthcare 
Radiology Report 
Generation 

Translates X-rays, MRIs, or CT scans into structured 
textual reports. 

Vision + Language 

 Multi-modal 

Diagnosis 
Integrates patient history, medical imaging, and genomics 

for comprehensive diagnosis. 
Vision + Text + 

Structured Data 

Education Interactive Tutors 
Provides real-time explanations using text, images, and 
speech, enhancing engagement. 

Text + Vision + Audio 

 Multilingual Learning 
Aids 

Offers educational materials in multiple languages with 
visual and audio aids. 

Text + Vision + Audio 

Accessibility 
Visual Scene 
Descriptions 

Generates contextual descriptions of visual scenes for 
visually impaired users. 

Vision → Text 

 

 
Figure 3 : Applications of Multi-Modal Foundation Models 

VI. EVALUATION METRICS AND BENCHMARKS 
Evaluating multi-modal foundation models (MMFMs) is difficult due to the wide spectrum of tasks, outputs and 

modalities that are used. While the input spaces of MMFMs are varied, unlike unimodal models; for instance, generating text 
from images, answering questions behind video content as well as cross-modality embeddings being exploited in content 
retrieval. As a result, a vast number of benchmarks and metrics have been designed to assess how well these systems 

perform on many kinds of tasks involving multiple modalities. They go beyond accuracy and measure the fluency, relevance 
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and humanness of outputs — or how in-context they are.Given the setup of this benchmark, example evaluation tasks, 
datasets and evaluation metrics are covered below 

Table 2 : MMFM Evaluation Metrics and Benchmarks. 

Image Captioning COCO, Flickr30K BLEU, CIDEr, METEOR 
Visual Question Answering (VQA) VQA 2.0, GQA Accuracy, BLEU 

Image-Text Retrieval MS-COCO, Conceptual Captions Recall@1, Recall@5, Recall@10 
Video Understanding TVQA, Epic-Kitchens Action Recognition Accuracy, BLEU 

Multi-modal Question Answering OKVQA, ScienceQA Exact Match (EM), F1 Score 
 

These are a few of the metrics we can look at to get an understanding of how our model is performing; every one 

adding a different perspective on the performance of our model. BLEU and METEOR: These scores attempt to score the 
quality of the generated text as if it were a real output on the image. CIDEr: Consensus based, with importance to 
informativeness and evaluates against multiple references. Since the similarity score is bounded in [0, pi], we can have a 
similar re-rank result for [Angular Recall@k] measures between 2 methods and it is important to work under this setting 
when the gallery may be full but view diversified (e.g. image-text retrieval). For VQA / Multi-modal QA, the correctness and 
completeness of answers is evaluated based on Accuracy, F1 & Exact Match (EM) metrics. 

The new MMFMs have been constantly improving; thus, while each enhancing the models in different ways, they will 
also provide new types of benchmarks for better support to multi-step reasoning, real-world grounding and more complex 
type of interactions into more innovative architectures. Even evaluating has yet to be standardized, especially for something 
as open-ended as story generation or creative synthesis in general. 

VII. CHALLENGES 
Recently, a new breed of multi-modal foundation models (MMFMs) have made a splash across many domains, but 

their design and deployment raise critical issues that need to be addressed by researchers and practitioners for robust, 
efficient and fair results. 

A.  Data Alignment 
We regard a well-aligned textual content-image-audio-video set as one of the most important scale and quality 

criteria for supervised training of multimodal few-shot models. But it is very costly and requires lots of time to create these 
datasets. Additionally, high-quality datasets can be produced when observing spurious correlations that may pass into model 
representations, such as object or property and demographic traits associations. Cross-Modal Alignment (CMA) is an open 
research issue primarily in the unstructured/semi-paired data scenario. 

B. Scaling and Compute 

Hundreds (or thousands) of GPUs or TPUs for multiple days (or likely, weeks to potentially months!) in order to 
efficiently train those MMFMs! That in effect, also increases the barrier to entry for smaller institutions, and leads one to 
question what is the environmental cost of that much energy heavy training. Approaches such as model distillation, 
parameter sharing or low-rank adaptation have been recommended to alleviate computational demands Abstractly speaking 
but likely at a price of reducing the performance. Combined with it, Efficient and scalable training strategies are another 
related problem there. 

C.  Evaluation 
The inherent difficulty in evaluating MMFMs lies with the traditional ways we evaluate them. Because models are 

trained across a broad spectrum of modalities and naturally exhibit unbounded responses, some global mixture of 
correctness, relevance and coherence is that much harder to measure universally… These aspects make metrics like BLEU, 
Recall@k and many other proxies currently used to justify existence of a successful ALGO perform poor when applied for 

tasks that expect or are happy with any generic or gamed outputs. We want a consistent and understandable evaluation 
framework that can be used to compare models across groups. 

 

D. Real-Time and On-Device Inference 
Most MMFMs are quite massive and resource consuming allowing no real-time inference on edge devices. The 

significance of these lightweight models is that these can be used in real-time performance applications where mobile 
assistant or robotic systems work. To resolve this bottleneck, research has been proposed in various forms like quantization, 
pruning as well as neural architecture search (NAS) [3]. 
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E. Ethical Concerns 
Because they enable the creation of lifelike multi-modal content, these raise especially hard ethical questions for 

MMFMs. However, these models may inadvertently reinforce societal biases (that are embedded in the training data), which 
can have implications of fairness and inclusivity. We can also use it to create realistic deepfakes or misinformation and cheat 
everyone with what is true or A.I. Another important aspect is privacy, as many of the MMFMs are learned on web-scale data 
which could include PII/copyright information. 

VIII. SOCIETAL IMPACT 
MMFMs, already in their foundation elements, will show that they can be transformative power models for a lot of 

situations. These models combining human language, vision and sound — along with video — create new avenues for us to 
partner with human senses to fuel advancements in perception enhancement. Nevertheless, the models that operationalize 
these paradigm shifts also come with substantial societal risks for which critical consideration and oversight are 
mandatory.On the education front, MMFMs-power personalized learning platforms. By being tailored to the individual, 
through flexibility in learning styles and providing multi-sensory explanations with responsive practice (verbal and visual) 
tools of this nature can enhance inclusivity into education. However, there is a risk of incorrect information as models 
continue to be spread further and these systems are not monitored or loaded with genuine content. But at the same time, 
there's worry that focusing too much on AI could dilute human mentorship and human reasoning. 

Alternative versions of the MMFMs, are assistive technologies with accessibility in mind. There are apps made for 

blind people, which can describe the pelicules to them. Assisting in treating brain related medical conditions such as 
Cognitive Impairment or mental retardation and again perhaps people those who are very low at voice modulating utilizing 
speech-to-text to render the deepfake alive. But the problem is developing practices — that maintain user agency in 
situations where AI signals are sometimes wrong and it can be more harmful and misinterpreted for important 
circumstances. 

MMFMs in media and entertainment need manual creative use cases, like learning to have a human write music, 
video or paint from plain-text (or image) prompts. This will democratise the content creation and led to various stories and 
new expressions. But, at the same time, those instruments can be used for diabolical purposes — to generate deepfakes, 
lifelike simulations of people that could change public opinion or just build even more distrust in any form of media actually 
produced. 

MMFMs automate industrial and business-level tasks that once required human expertise for report writing, 

visualization design, and technical support, AKA enhancing their value by reducing the costs to perform these functions. But 
it's a fast-encroaching trend that — in addition to sparking concerns over income gaps and retraining the workforce —
traditionally verges on one of those putting workers out of work in traditionally creative-heavy sectors. 

Table 3 : Foundations of Multi-Modal Models and Societal Impact 

Aspect Positive Impact Potential Risk 
Education Personalized, engaging, multi-modal learning Misinformation, over-reliance on AI tutors 

Accessibility Empowering assistive tech for impairments Overtrust in imperfect outputs 
Media Enhanced creativity, democratized content 

creation 
Deepfakes, misinformation, content manipulation 

Industry Increased productivity, task automation Job displacement, reduced demand for creative 
professions 

 
Figure 4: Interaction  AI and Society 

IX. FUTURE DIRECTIONS 
Challenges and Opportunities in Multimodal ResearchAs multimodal foundation models (MMFM) progress, several 

exciting directions are emerging that chart the way for the future of intelligent systems. Unified tokenizationOne the open 
issue in this how to represent any modality text, images, audio, video or even action to one tokens format. This way it is only 
possible to use a single architecture for all modalities irrespectively of their data streams and moreover simply plug this 
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same architecture into these MMFMs out-of-the-box, which can model and generate across modalities no longer requiring 
distinct processing branches. This is some of the early work to make things unified for modeling with projects like Flamingo 
and Gemini, but actual multi-modal understanding here would require a lot more. 

An important future frontier is reasoning and planning. These days, MMFMs are good at pattern recognition + 
association but are terrible with structured reasoning / multi-hop logic. neuro-symbolic system — to be integrated with a 
symbolic reasoning engine, maybe that would enable them do more cognitive things (as higher level/planning and execution 

would work with MMFMs). Fuuuuck, this seems like it could save the life of anybody not in gaming (where anyone who can 
read pseudocode and use Copy + Paste is already more than efficient) whose domains are little bit too complex that it needs 
just simple pattern matching, for example scientific research or medical diagnosis or multi-step problem solving.… 

Another direction, with the help of the rise of human-in-the-loop AI, stresses real-time integration with human 
feedback. Conclusion MMFMs are models that allow for user adaptation according to interaction, preference, or correction 
but with proper control and a safety net hence Results imply that such MMFMs can be much more in line with human 
values. There are some reinforcement learning from human feedback (RLHF) methods though its scale upto multi… benefits 
personal assistant, safety and explainability of RL models. 

We also see the emergence of modular architectures, where larger models are composed from reusable and 
interchangeable components (e.g., vision encoders, text generators or reasoning modules) This makes for cleaner more 
modular code and very useful when you need a small chunk of functional code. The modular design also gives the ability to 

run tiny components which enables federated and edge deployments. 

And lastly, the development of generative multi-modal AI will necessitate legal and regulatory frameworks. The time 
for deepfake concerns, copyright infringements, or data privacy is already past time. Governments, industry stakeholders, 
and ethicists must collaborate to establish standards for transparency, consent, traceability, and due consideration. While 
these frameworks should to help ensure the broad collateral benefits of MMFMs, they need also shield against potential risks 
in missetting, misknowledge and mistargeting. 

Collectively, these three next steps focus on transitioning MMFMs from awe-inspiring prototypes to stable, scalable 
technologies that are both safe and functional IRL. 

X. CONCLUSION 
The advent of multi-modal foundation models (mmfms) is a paradigmatic change away from the spread of artificially 

grown abstractions. They have allowed new capabilities in cross-modal understanding, reasoning and generation by bringing 

multiple data modalities —text, vision, audio & video— together under the same architecture. Starting from their uni-modal 
ancestors in the form of BERT [6] for text and CLIP [14] for vision-language alignment, MMFMs have quickly evolved over 
the last year to fill a growing need for universal AI systems that can transfer with little to no fine-tuning across many tasks. 
A giant step closer to achieving artificial general intelligence (AGI), where models learn, reason and act in a wide variety of 
environments and contexts. 

They have limitless applications for MMFMs, as they can affect one to the other in various ways and serve wide-
spread consequences. Hospitals — In hospitals MMFMs are used to retrieve image data, patient records and/or physician 
notes for diagnosis and report making in health care. Multimodal interactive tutors that can not only read and interpret 
images, but also speak, answer spoken questions and deliver multilingual content for education That also means that the 
models can be used for real-time visual scene descriptions, assistive captioning, and other similar cognitive support tools. 

For robotics applications, this translates to being able to integrate a spoken command with the environmental context seen 
by the machines; as a consequence, MMFMs can be exploited by robots for improved autonomous task performance. The 
creative industry is not only an area for new doors opening to co-creative collaboration between machines and human 
beings but the AI-generated storytelling, text-to-video generating or music synthesis that MMFMs facilitate. 

MMFMs are very effective but also reactively induced by corticosteroids, pose significant management challenges as 
well. Several technical constraints arrive even though like difficulties in data alignment, high computational requirements, 
and robust evaluation methods across modalities etc Deployment is still another beast, as even modestly sized models can be 
quite resource intensive to run in realtime, especially in systems not ideally suited to the task. Ethical concerns are equally 
pressing. When that happens, discriminatory biases in the encoded distributions of different modalities can be learned and 
then reinforced or even amplified by (multi-modal) downstream learning tasks rendering inference-time predictions unfair 
— a fact which could result in alarming applications such as hiring, law enforcement, healthcare of possibly millions of 

people. These issues preview other inauthenticity, misinformation and deepfake threats because an MMFM could be used to 
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create "deepfake" content. Privacy issues also come up when building the models with raw web data which data might be left 
unpreprocessing or contains personal privacy information, plagiarism. 

And with MMFMS growth, both regulators globally and businesses alike should join forces for a shared governance to 
help guide oversight the same as what in place within grid commerce. Building these standards for transparency, data 
provenance, responsible data and user consent is crucial. We should make our MMFMs interpretable and explainable as the 
output may be used in places of importance for example in medicine, law or public policy.randomUUID developments are 

reliable. 

Looking ahead, the researcher says the future of MMFMs will likely be with larger modularity and increased efficiency 
and controllability. Further advancements on aligned tokenization, human-in-the-loop interaction and even something as 
wide as common sense reasoning integration and real-time execution would significantly enhance the capability of these 
systems to become more functional across the board. The study also much take into account to making they MMFMs more 
equitable and inclusive, demonstrating that those natural being abilities are trainable in different native languages, culture 
groups but form of representation as manner of the general-purpose AI. 
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