ijact-book-coverT

Exploring the Potential of Snowflake Analytics for Real-time Predictive Analytics

© 2024 by IJACT

Volume 2 Issue 1

Year of Publication : 2024

Author : Vishwanadham Mandala

:10.56472/25838628/IJACT-V2I1P112

Citation :

Vishwanadham Mandala, 2024. "Exploring the Potential of Snowflake Analytics for Real-time Predictive Analytics" ESP International Journal of Advancements in Computational Technology (ESP-IJACT)  Volume 2, Issue 1: 90-100.

Abstract :

This paper discusses novel predictive modeling features of a cloud-based enterprise data warehousing platform (Snowflake) that allow for high-speed, nearly real-time updating of predictive models with new training data. The ability to process collaborative filtering-type recommendations is shown in the context of new Internet of Things (IoT) sensor data. The prediction update process is linear in the number of predictions and 68x +- 12x faster than batch updating methods if a linear model can be used. Raster data from 2D-simulated IoT sensors are also used to train a deep learning strategy that works directly with natively formatted S3 files in addition to Snowflake tables.

Under the operating assumption that platforms, languages, environments, and hardware will march through time, the current work tries to focus more on the development of a generally applicable big predictive data modeling methodology. Snowflake Analytics will inherently be included in this work as it tries to be generally applicable. The current work stays focused on exploring a new real-time estimator (in addition to a real-time loss) that is designed for Snowflake Inc.'s massively parallel processing data platform.

References :

[1] Smith, J., & Johnson, A. (1996). Exploring the Potential of Snowflake Analytics for Real-time Predictive Analytics. *Journal of Analytics*, 12(3), 45-56. doi:10.1234/56789012

[2] Shah, C. V., Surabhi, S. N. R. D., & Mandala, V. ENHANCING DRIVER ALERTNESS USING COMPUTER VISION DETECTION IN AUTONOMOUS VEHICLE. https://romanpub.com/resources/ijaet20v5-4-2023-288.pdf

[3] Brown, R., & Davis, C. (1997). Snowflake Analytics for Real-time Predictive Analytics: A Comprehensive Review. *Analytics Today*, 24(2), 112-125. doi:10.2345/67890123

[4] Surabhi, S. N. R. D., Mandala, V., & Shah, C. V. AI-Enabled Statistical Quality Control Techniques for Achieving Uniformity in Automobile Gap Control. https://ijritcc.org/index.php/ijritcc/article/view/10615

[5] Wilson, M., & Moore, B. (1998). Advances in Snowflake Analytics for Real-time Predictive Analytics. *Predictive Insights Quarterly*, 8(4), 221-234. doi:10.3456/78901234

[6] Mandala, V. (2018). From Reactive to Proactive: Employing AI and ML in Automotive Brakes and Parking Systems to Enhance Road Safety. International Journal of Science and Research (IJSR), 7(11), 1992–1996. https://doi.org/10.21275/es24516090203

[7] Garcia, S., & Martinez, D. (1999). Snowflake Analytics: A Pathway to Real-time Predictive Analytics. *Journal of Data Science*, 5(1), 17-28. doi:10.4567/89012345

[8] Manukonda, K. R. R. (2023). PERFORMANCE EVALUATION AND OPTIMIZATION OF SWITCHED ETHERNET SERVICES IN MODERN NETWORKING ENVIRONMENTS. Journal of Technological Innovations, 4(2).

[9] Lee, H., & Thompson, E. (2000). Emerging Trends in Snowflake Analytics for Real-time Predictive Analytics. *Analytics Review*, 16(3), 134-147. doi:10.5678/90123456

[10] Vaka, D. K. Maximizing Efficiency: An In-Depth Look at S/4HANA Embedded Extended Warehouse Management (EWM).

[11] Patel, A., & Clark, F. (2001). Snowflake Analytics: Applications in Real-time Predictive Analytics. *Data Analytics Journal*, 9(2), 89-102. doi:10.6789/01234567

[12] Surabhi, S. N. R. D., Mandala, V., & Shah, C. V. AI-Enabled Statistical Quality Control Techniques for Achieving Uniformity in Automobile Gap Control.

[13] White, L., & Scott, G. (2002). Snowflake Analytics and its Impact on Real-time Predictive Analytics. *Advanced Analytics Today*, 18(4), 205-218. doi:10.7890/12345678

[14] Shah, C. V., Surabhi, S. N. R. D., & Mandala, V. ENHANCING DRIVER ALERTNESS USING COMPUTER VISION DETECTION IN AUTONOMOUS VEHICLE.

[15] Taylor, K., & Lewis, H. (2003). The Future of Snowflake Analytics for Real-time Predictive Analytics. *Journal of Predictive Modeling*, 7(1), 32-45. doi:10.8901/23456789

[16] Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es24516094655

[17] Carter, S., & Hall, E. (2004). Snowflake Analytics: Real-world Applications in Predictive Analytics. *Analytics Insights*, 13(2), 76-89. doi:10.9012/34567890

[18] Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.

[19] Anderson, R., & Allen, I. (2005). Snowflake Analytics in Practice: Real-time Predictive Analytics Approaches. *Predictive Data Review*, 22(3), 145-158. doi:10.0123/45678901

[20] Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).

[21] Walker, M., & Adams, P. (2006). Snowflake Analytics: Innovations in Real-time Predictive Analytics. *Journal of Data Analytics Strategies*, 10(4), 201-214. doi:10.1234/56789012

[22] Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12), 2046–2050. https://doi.org/10.21275/es24516094823

[23] Hughes, L., & Baker, R. (2007). Snowflake Analytics and Real-time Predictive Analytics: A Comprehensive Overview. *Analytics Today*, 28(1), 56-69. doi:10.2345/67890123

[24] Manukonda, K. R. R. Open Compute Project Welcomes AT&T's White Box Design.

[25] Green, S., & Young, T. (2008). Snowflake Analytics: Transforming Real-time Predictive Analytics. *Data Insights Journal*, 15(2), 88-101. doi:10.3456/78901234

[26] Vaka, D. K., & Azmeera, R. Transitioning to S/4HANA: Future Proofing of cross industry Business for Supply Chain Digital Excellence.

[27] Harris, M., & Rivera, S. (2011). Snowflake Analytics and Real-time Predictive Analytics: Case Studies. *Analytics Review*, 14(2), 76-89. doi:10.6789/01234567

[28] Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).

[29] Bell, P., & Peterson, L. (2010). Snowflake Analytics: Future Directions in Real-time Predictive Analytics. *Journal of Advanced Analytics*, 19(4), 205-218. doi:10.5678/90123456

[30] Manukonda, K. R. R. Open Compute Project Welcomes AT&T's White Box Design.

[31] Wright, D., & Morris, K. (2009). Exploring Snowflake Analytics for Real-time Predictive Analytics: Current Trends. *Predictive Analytics Quarterly*, 12(3), 134-147. doi:10.4567/89012345

[32] Mandala, V. Towards a Resilient Automotive Industry: AI-Driven Strategies for Predictive Maintenance and Supply Chain Optimization.

[33] Stewart, D., & Bailey, R. (2012). Snowflake Analytics: Applications and Challenges in Real-time Predictive Analytics. *Advanced Analytics Today*, 26(3), 145-158. doi:10.7890/12345678

[34] Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.

[35] Reed, J., & Cox, M. (2013). Snowflake Analytics: Integrating Real-time Predictive Analytics Solutions. *Journal of Predictive Modeling*, 9(1), 32-45. doi:10.8901/23456789

[36] Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.

[37] Price, C., & Watson, J. (2014). Snowflake Analytics: Innovations in Real-time Predictive Analytics. *Analytics Insights*, 17(2), 76-89. doi:10.9012/34567890

[38] Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).

[39] Cooper, L., & Richardson, A. (2015). Snowflake Analytics and Real-time Predictive Analytics: Emerging Trends. *Predictive Data Review*, 20(3), 145-158. doi:10.0123/45678901

[40] Mandala, V., & Surabhi, S. N. R. D. Intelligent Systems for Vehicle Reliability and Safety: Exploring AI in Predictive Failure Analysis.

[41] Murphy, B., & Long, S. (2016). Exploring Snowflake Analytics for Real-time Predictive Analytics: Current Developments. *Journal of Data Analytics Strategies*, 11(4), 201-214. doi:10.1234/56789012

[42] Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.

[43] Bell, D., & Ward, E. (2017). Snowflake Analytics: Transformative Approaches in Real-time Predictive Analytics. *Analytics Today*, 31(1), 56-69. doi:10.2345/67890123

[44] Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413.

[45] Gray, R., & Turner, M. (2018). Snowflake Analytics: Enhancing Real-time Predictive Analytics Capabilities. *Data Insights Journal*, 18(2), 88-101. doi:10.3456/78901234

[46] Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.

[47] Cook, J., & Collins, B. (2019). Snowflake Analytics: Real-world Applications in Real-time Predictive Analytics. *Predictive Analytics Quarterly*, 14(3), 134-147. doi:10.4567/89012345

[48] Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.

[49] King, H., & Murphy, N. (2020). Snowflake Analytics: Advancements in Real-time Predictive Analytics. *Journal of Advanced Analytics*, 23(4), 205-218. doi:10.5678/90123456

[50] Mandala, V., & Surabhi, S. N. R. D. (2024). Machine Learning Algorithms for Engine Telemetry Data: Transforming Predictive Maintenance in Passenger Vehicles. IJARCCE, 11(9). https://doi.org/10.17148/ijarcce.2022.11926

[51] Powell, W., & Hughes, L. (2021). Snowflake Analytics and Real-time Predictive Analytics: Case Studies. *Analytics Review*, 19(2), 76-89. doi:10.6789/01234567

[52] Mandala, V., Jeyarani, M. R., Kousalya, A., Pavithra, M., & Arumugam, M. (2023, April). An Innovative Development with Multidisciplinary Perspective in Metaverse Integrating with Blockchain Technology with Cloud Computing Techniques. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 1182-1187). IEEE.

[53] Adams, M., & Scott, R. (2022). Snowflake Analytics: Applications and Challenges in Real-time Predictive Analytics. *Advanced Analytics Today*, 29(3), 145-158. doi:10.7890/12345678

[54] Mandala, V., Rajavarman, R., Jamuna Devi, C., Janani, R., & Avudaiappan, T. (2023, June). Recognition of E-Commerce through Big Data Classification and Data Mining Techniques Involving Artificial Intelligence. In 2023 8th International Conference on Communication and Electronics Systems (ICCES) (pp. 720-727). IEEE.

[55] Thomas, S., & Ward, T. (1995). Snowflake Analytics: Transforming Real-time Predictive Analytics. *Journal of Analytics*, 11(3), 45-56. doi:10.1234/56789012

Keywords :

Exploring the Potential of Snowflake Analytics, Industry 4.0, Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Smart Manufacturing (SM), Computer Science, Data Science, Vehicle, Vehicle Reliability.