Parth Chandak, Dr. Alaka Chandak, 2024. "Optimizing Bio-Inspired Phototropic Materials: Addressing Scalability and Durability Challenges for Passive Solar Tracking Systems" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 4: 87-99.
Bio-inspired phototrophic materials can change passive solar tracking systems and improve them by creating them like they attract sunlight, just like plants do. These components have resulted in excellent energy savings as well as extraordinary context-awareness. For example, MXene-enhanced actuation devices can convert 95 percent of incoming light into heat energy, while SunBOTs capture 400 percent more energy. High fabrication costs, technical complexity, and low durability under environmental stresses hamper their scalability and commercial feasibility. This systematic review aggregates the findings of multiple high-quality worldwide studies to help address these issues. It underscores substantial advancements, such as self-healing polymers, scalable roll-to-roll manufacturing, and hybrid material designs. Connecting development with the United Nations Sustainable Development Goals (SDGs) and the Paris Agreement helps this work to show a road map for including bio-inspired phototropic materials in renewable energy systems. The results underline the possibilities of the materials to change solar energy systems and support worldwide sustainability projects.
[1] International Energy Agency, Renewables 2022, Dec. 2022. [Online]. Available: https://iea.blob.core.windows.net/assets/ada7af90-e280-46c4-a577-df2e4fb44254/Renewables2022.pdf.
[2] R. Senthil and S. Yuvaraj, A comprehensive review on bioinspired solar phototropic materials, International Journal of Energy Research, vol. 42, no. 5, pp. 345–355, 2018. doi: 10.1002/er.4255.
[3] X. Qian et al., Artificial phototropism for omnidirectional tracking and harvesting of light, Nature Nanotechnology, vol. 14, no. 5, pp. 1038–1050, 2019. doi: 10.1038/s41565-019-0562-3.
[4] Yang, M., Xu, Y., Zhang, X., Bisoyi, H. K., Xue, P., Yang, Y., ... & Li, Q. (2022). Bioinspired phototropic MXene‐reinforced soft tubular actuators for omnidirectional light‐tracking and adaptive photovoltaics. Advanced Functional Materials, 32(26), 2201884. doi: 10.1002/adfm.202201884.
[5] Zhou, H., Xu, J., Liu, X., Zhang, H., Wang, D., Chen, Z., ... & Fan, T. (2018). Bio‐inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Advanced Functional Materials, 28(24), doi: 10.1002/adfm.201705309.
[6] Wang, Y., Li, M., Chang, J. K., Aurelio, D., Li, W., Kim, B. J., ... & Omenetto, F. G. (2021). Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures. Nature communications, 12(1), 1651. doi: 10.1038/s41467-021-21764-6.
[7] Tu, Z., Wang, J., Liu, W., Chen, Z., Huang, J., Li, J., ... & Qiu, X. (2022). A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy. Materials Horizons, 9(10), 2613-2625.. doi: 10.1039/d2mh00859a.
[8] Rajagopal, A., Yao, K., & Jen, A. K. Y. (2018). Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials, 30(32), 1800455.. doi: 10.1002/adma.201800455.
[9] D. Libonati and M. J. Buehler, Advanced structural materials by bioinspiration, Advanced Engineering Materials, vol. 18, no. 8, pp. 1234–1245, 2016. doi: 10.1002/adem.201600787.
[10] Z. Zhang et al., Nanofluidics for osmotic energy conversion, Nature Reviews Materials, vol. 6, pp. 622–639, 2021. doi: 10.1038/s41578-021-00299-6.
[11] Huang, Y., Bisoyi, H. K., Huang, S., Wang, M., Chen, X. M., Liu, Z., ... & Li, Q. (2021). Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angewandte Chemie International Edition, 60(20), 11247-11251.https://doi.org/10.1002/anie.202101881
[12] Qian, X., Zhao, Y., Alsaid, Y., Wang, X., Hua, M., Galy, T., ... & He, X. (2019). Artificial phototropism for omnidirectional tracking and harvesting of light. Nature nanotechnology, 14(11), 1048-1055.. doi: 10.1038/s41565-019-0562-3.
[13] G. Dai and L. Mishnaevsky, Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades, Composites Part B-engineering, vol. 78, pp. 349-360, 2015. [Online]. Available: https://consensus.app/papers/carbon-nanotube-reinforced-composites-computational-dai/d645988e85a150999fe1f9bdba02a37a/. DOI: 10.1016/J.COMPOSITESB.2015.03.073.
[14] F. Sun and H. Xu, A review of biomimetic research for erosion wear resistance, Bio-Design and Manufacturing, vol. X, pp. 1-17, 2020. [Online]. Available: https://consensus.app/papers/review-research-erosion-wear-resistance-sun/d3a380e786a156cb8c6f07984bb5acf3/. DOI: 10.1007/s42242-020-00079-3.
[15] M. Soliman and D. Frangopol, Life-Cycle Cost Evaluation of Conventional and Corrosion-Resistant Steel for Bridges, Journal of Bridge Engineering, vol. 20, no. 6, pp. 06014005, 2015. [Online]. Available: https://consensus.app/papers/lifecycle-cost-evaluation-conventional-soliman/2aa6b575233b5d598d80860a2d125c32/. DOI: 10.1061/(ASCE)BE.1943-5592.0000647.
[16] G. J. Ruiz-Mercado, J. Segovia-Hernández, and A. Castro-Montoya, Transformation towards sustainable bioenergy systems, Clean Technologies and Environmental Policy, vol. 20, pp. 1385, 2018. [Online]. Available: https://consensus.app/papers/transformation-towards-bioenergy-systems-ruizmercado/38b10a4cd3b55445afdb582066feb3b0/. DOI: 10.1007/s10098-018-1585-4.
Bio-Inspired Materials, Passive Solar Tracking, Phototropic Systems, Scalability Challenges, Renewable Energy Technology, Material Durability