IJAST

Green Synthesis, Characterization and Corrosion Studies of Mild Steel by Using Novel Inhibitor of Acalypha Wilkesiana

© 2024 by IJAST

Volume 2 Issue 1

Year of Publication : 2024

Author : Sunitha K, Swamy M. T, Pruthviraj R. D

: 10.56472/25839233/IJAST-V2I1P108

Citation :

Sunitha K, Swamy M. T, Pruthviraj R. D, 2024. "Green Synthesis, Characterization and Corrosion Studies of Mild Steel by Using Novel Inhibitor of Acalypha Wilkesiana" ESP International Journal of Advancements in Science & Technology (ESP-IJAST)  Volume 2, Issue 1: 52-59.

Abstract :

Lemon juice extract was used in the solution combustion method to create the acalypha wilkesiana. For mild steel, the artificial acalypha wilkesiana showed corrosion inhibition. The surface characteristics of surfaces treated with inhibitors and untreated surfaces are analysed using the resulting sem and tem micrographs. It demonstrates that, in comparison to free mild steel, the stressed surface of Acalypha Wilkesiana has a greater potential to avoid corrosion. The potentiodynamic values showed that mild steel with varying concentrations had a greater propensity to resist corrosion in a 1 m hydrochloric acid solution at temperatures of 250 and 350 degrees Celsius. Tafel polarisation and electrochemical impedance were examined at various concentrations at 250 and 350 degrees Celsius. the rate of adsorption rises as the concentrations of the inhibitors do.

References :

[1] Ahmed S., Ikram S. Synthesis of gold nanoparticles using plant extract: an overview. Nano Res. Appl. 2015;1(1):1–6. http://nanotechnology.imedpub.com/archive.php [Google Scholar]

[2] Ajayi E., Afolayan A. Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8(1):015017. [Google Scholar]

[3] Akinyemi K.O., Olukayode O.C., Fasure O. Screening of crude extracts of six medicinal plants used in South-west Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern. Med. 2006:1–7. [PMC free article] [PubMed] [Google Scholar]

[4] Babu S.A., Prabu H.G. Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Mater. Lett. 2011;65(11):1675–1677. [Google Scholar]

[5] Bindhu M.R., Umadevi M. Silver and gold nanoparticles sensor and antibacterial applica-02 tions. Spectrochim. Acta Part A Molecular and Biomolecular Spectroscopy. 2014;2014(128):37–45. [PubMed] [Google Scholar]

[6] Dada A.O., Adekola F.A., Odebunmi E.O. Kinetics and equilibrium models for sorption of Cu(II) onto a novel manganese nano-adsorbent. J. Dispersion Sci. Technol. 2016;37(1):119–133. [Google Scholar]

[7] Dada A.O., Adekola F.A., Odebunmi E.O. Liquid phase scavenging of Cd (II) and Cu (II) ions onto novel nanoscale zerovalent manganese (nZVMn): equilibrium, kinetic and thermodynamic studies. Environ. Nanotechnol. Monit. Manag. 2017;8:63–72. [Google Scholar]

[8] Dada A.O., Ojediran O.J., Dada F.E., Olalekan A.P., Awakan O.J. Green synthesis and characterization of silver nanoparticles using Calotropis procera extract. J. Appl. Chem. Sci. Int. 2017;8(4):137–143. [Google Scholar]

[9] Dada A.O., Adekola F.A., Odebunmi E.O. Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase Adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chem. J. 2017;3 1351653, pg 1- 20. [Google Scholar]

[10] Dada A.O., Adekola F.A., Adeyemi O.S., Bello M.O., Adetunji C.O., Awakan O.J. 2018. Silver Nanoparticles - Fabrication, Characterization and applications; pp. 165–184. Chapter 9. [Google Scholar]

[11] Dada A.O., Inyinbor A.A., Idu I.E., Bello O.M., Oluyori A.P., Adelani –Akande T.A., Okunola A.A., Dada O. Eff ect of operat ional param eters, charact erization and anti-bacterial studies of green synthesis of Silver Nano particles, using Tithonia diversifolia. PeerJ. 2018;6 [PMC free article] [PubMed] [Google Scholar]

[12] Davidović S., Lazić V., Vukoje I., Papan J., Anhrenkiel S.P., Dimitrijević S., Nedeljković J.M. Dextran coated silver nanoparticles — chemical sensor for selective cysteine detection. Colloids Surfaces B Biointerfaces. 2017;160(2017):184–191. [PubMed] [Google Scholar]

[13] Edison T.J.I., Sethuraman M.G. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;104:262–264. [PubMed] [Google Scholar]

[14] Femi-Adepoju A.G., Dada A.O., Otun K.O., Adepoju A.O., Fatoba O.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon. 2019;5(2019) [PMC free article] [PubMed] [Google Scholar]

[15] Ibrahim H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:265–275. [Google Scholar]

[16] Jyoti M., Baunthiyal M., Singh A. Characterization of silver nanoparticles synthesized using Urticadioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9:217–227. [Google Scholar]

[17] Kaumeel C., Imran P., Tonmoy G., Chetan P., Rahulkumar M., Arup G., Sandhya M. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. July 2016;6(76) [Google Scholar]

[18] Kokila T., Ramesh P.S., Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Appl. Nanosci. 2015;2015(5):911–920. [Google Scholar]

[19] Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T. Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces. 2010;76:50–56. [PubMed] [Google Scholar]

[20] Nagarajan A., Alderson P.G., Arivalagan U. Effective surface sterilization and callus induction protocol for copper leaf (Acalypha wilkesiana) Int. J. Appl. Biotechnol. Biochem. 2003;3(1):37–49. [Google Scholar]

[21] Olivier T., David S., Bertrand P., Erick D. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010;8(3):207–217. [PubMed] [Google Scholar]

[22] Oluwaniyi O.O., Adegoke H.I., Adesuji E.T., Alabi A.B., Bodede S.O., Labulo A.H., Oseghale C.O. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl. Nanosci. 2016;6(6):903–912. [Google Scholar]

[23] Oyelani O.A., Onayemi O., Oladimeji F.A., Ogundani O.A., Olugbade T.A., Onawunmi G.O. Clinical evaluation of Acalypha ointment in the treatment of superficial fungal skin diseases. Phytother Res. 2003;17:555–557. [PubMed] [Google Scholar]

[24] Pochapski M.T., Fosquiera E.C., Esmerino L.A., dos Santos E.B., Farago P.V., Santos F.A., Groppo F.C. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves' extract from Ipomoea batatas (L.) Lam. Pharmacogn. Mag. 2011;7(26):165–171. [PMC free article] [PubMed] [Google Scholar]

[25] Prathna T.C., Chandrasekaran N., Ashok M., Raichur A.M. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloid. Surf. Physicochem. Eng. Asp. 2011;377:212–216. [Google Scholar]

[26] Ravindran A., Chandran P., Khan S.S. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surfaces B Biointerfaces. 2013;105:342–352. [PubMed] [Google Scholar]

[27] Rivera-Rangela R.D., González-Muñoza M.P., Avila-Rodrigueza M., Razo-Lazcanoa T.A., Solans Conxita. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf., A. 2018;536:60–67. [Google Scholar]

[28] Senguttuvan J., Paulsamy S., Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed. 2014;4(Suppl 1):S359–S367. [PMC free article] [PubMed] [Google Scholar]

[29] Shankar S.S., Rai A., Ahmad A., Sastry M.J. Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J. Colloid Interface Sci. 2004;275:496–502. [PubMed] [Google Scholar]

[30] Shiv S.S., Absar A., Murali S. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003;19(6):1627–1631. [PubMed] [Google Scholar]

[31] Singh S., Saikia J.P., Buragohain A.K. A novel ‘green’ synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids Surfaces B Biointerfaces. 2013;102:83–85. [PubMed] [Google Scholar]

[32] Tippayawat P., Phromviyo N., Boueroy P., Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ. 2016;4 [PMC free article] [PubMed] [Google Scholar]

[33] Tong S.Y., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015;28(3):603–661. [PMC free article] [PubMed] [Google Scholar]

[34] Tran T.T.T., Vu T.H.T., Hanh Thi Nguyen T.H. Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity. Mater. Lett. 2013;105:220–223. [Google Scholar]

[35] Udobang J.A., Nwafor P.A., Okokon J.E. Analgesic and antimalarial activities of crude leaf extract and fractions of Acalypha wilkesiana. J. Ethnopharmacol. 2010;127:373–378. [PubMed] [Google Scholar]

[36] Vijayaraghavan K., Kamala Nalini S.P., Prakash N.U., Madhankumar D. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater. Lett. 2012;75:33–35. [Google Scholar]

[37] Wen C., Shao M., Zhuo S., Lin Z., Kang Z. Silver/graphene nanocomposite: thermal decom-10 position prep catalytic performance. Mater. Chem. Phys. 2012;135:780–785. [Google Scholar]

[38] Yong S.J., Kim S.K.B. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Eng. 2008;32(1):79–84. [PubMed] [Google Scholar]

[39] Zhang X.-F., Liu Z.-G., Shen W., Gurunathan S. Silver nanoparticles: synthesis, (2014) characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016;17(9):1534. [PMC free article] [PubMed] [Google Scholar]

Keywords :

Mild Steel, Acalypha Wilkesiana Inhibitor, Weight Loss Measurement, Potentiometric Polarization, Scanning Electron Microscope, TEM, Tafel Polarization, EDAX.